Literatur zu Bernd Meyer: Die E-Zigarette, Fakten & Mythen. 

(Hier gehts zurück zur Buchbeschreibung)

Die Zahlen beziehen sich auf die Anmerkungen im Buch. Die meisten Links zu Fachzeitschriften führen zur jeweiligen Zusammenfassung (Abstract) in PubMed, wo zumeist weiterführende Links zu den jeweiligen Volltexten bereitstehen. Allerdings sind viele Artikel hinter einer Paywall und nicht kostenfrei im Volltext einzusehen.

  1. Stöver, H. (Hrsg.) Ratgeber E-Zigarette: Einsteigen, Umsteigen, Aussteigen, Fachhochschulverlag Frankfurt a.M., Frankfurt (2019)
  2. Hill, A. B. The environment and disease: Association or causation? Proc. R. Soc. Med. 58, 295-300 (1965) DOI: PMC1898525; https://pubmed.ncbi.nlm.nih.gov/14283879
  3. Riahi, F., Rajkumar, S. & Yach, D. Tobacco smoking and nicotine delivery alternatives: Patterns of product use and perceptions in 13 countries. F1000Research 8, 17635 (2019) DOI: 10.12688/f1000research17635.2; https://pubmed.ncbi.nlm.nih.gov/31131094
  4. Kotz, D., Batra, A. & Kastaun, S. Rauchstoppversuche und genutzte Entwöhnungsmethoden. Eine deutschlandweite repräsentative Befragung anhand sozioökonomischer Merkmale in 19 Wellen von 2016–2019 (DEBRA-Studie). Dtsch. Arztebl. Int. 117, 7-13 (2020) DOI: 10.3238/arztebl.2020.0007; https://www.aerzteblatt.de/archiv/211741/Rauchstoppversuche-und-genutzte-Entwoehnungsmethoden
  5. Hsu, G. & Grodal, S. The double-edged sword of oppositional category positioning: A study of the U.S. e-cigarette category, 2007–2017. Administrative Science Quarterly (2020) DOI: 10.1177/0001839220914855; https://journals.sagepub.com/doi/full/10.1177/0001839220914855
  6. Russell, M. A. Low-tar medium-nicotine cigarettes: a new approach to safer smoking. BMJ 1, 1430-1433 (1976) DOI: 10.1136/bmj.1.6023.1430; https://pubmed.ncbi.nlm.nih.gov/953530
  7. Siegmund, B., Leitner, E. & Pfannhauser, W. Determination of the nicotine content of various edible nightshades (Solanaceae) and their products and estimation of the associated dietary nicotine intake. J. Agric. Food Chem. 47, 3113-3120 (1999) DOI: 10.1021/jf990089w; https://pubmed.ncbi.nlm.nih.gov/10552617
  8. Mills, E. J., Thorlund, K., Eapen, S., Wu, P. & Prochaska, J. J. Cardiovascular events associated with smoking cessation pharmacotherapies: A network meta-analysis. Circulation 129, 28-41 (2014) DOI: 10.1161/CIRCULATIONAHA.113.003961; https://pubmed.ncbi.nlm.nih.gov/24323793
  9. Benowitz, N. L., Pipe, A., West, R., Hays, J. T., Tonstad, S., McRae, T., Lawrence, D., St Aubin, L. & Anthenelli, R. M. Cardiovascular safety of varenicline, bupropion, and nicotine patch in smokers: A randomized clinical trial. JAMA Intern. Med. 178, 622-631 (2018) DOI: 10.1001/jamainternmed.2018.0397; https://pubmed.ncbi.nlm.nih.gov/29630702
  10. Singh, S., Pillai, S. & Chellappan, S. Nicotinic acetylcholine receptor signaling in tumor growth and metastasis. J. Oncol., 456743 (2011) DOI: 10.1155/2011/456743; https://pubmed.ncbi.nlm.nih.gov/21541211
  11. Heeschen, C., Jang, J. J., Weis, M., Pathak, A., Kaji, S., Hu, R. S., Tsao, P. S., Johnson, F. L. & Cooke, J. P. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat. Med. 7, 833-839 (2001) DOI: 10.1038/89961; https://pubmed.ncbi.nlm.nih.gov/11433349
  12. Davis, R., Rizwani, W., Banerjee, S., Kovacs, M., Haura, E., Coppola, D. & Chellappan, S. Nicotine promotes tumor growth and metastasis in mouse models of lung cancer. PLoS ONE 4, e7524 (2009) DOI: 10.1371/journal.pone.0007524; https://pubmed.ncbi.nlm.nih.gov/19841737
  13. Li, T., Zhang, J., Zhang, J., Zhang, N., Zeng, Y., Tang, S., Tao, Z., Qu, X., Jia, J., Zhu, W., Sun, X. & Chen, H. Nicotine-enhanced stemness and epithelial-mesenchymal transition of human umbilical cord mesenchymal stem cells promote tumor formation and growth in nude mice. Oncotarget 9, 591-606 (2018) DOI: 10.18632/oncotarget.22712; https://pubmed.ncbi.nlm.nih.gov/29416638
  14. Pullan, R. D., Rhodes, J., Ganesh, S., Mani, V., Morris, J. S., Williams, G. T., Newcombe, R. G., Russell, M. A. H., Feyerabend, C., Thomas, G. A. O. & Sawe, U. Transdermal nicotine for active ulcerative colitis. N. Engl. J. Med. 330. 811-815 (1994) DOI: 10.1056/nejm199403243301202; https://pubmed.ncbi.nlm.nih.gov/8114833
  15. Cohen, R. D. Nicotine in ulcerative colitis – how does it work and how can we use it? Cin. Immunother. 5, 169-174 (1996) DOI: 10.1007/BF03259080; https://link.springer.com/article/10.1007/BF03259080
  16. Gomes, J. P., Watad, A. & Shoenfeld, Y. Nicotine and autoimmunity: The lotus’ flower in tobacco. Pharmacol. Res. 128, 101-109 (2018) DOI: 10.1016/j.phrs.2017.10.005; https://pubmed.ncbi.nlm.nih.gov/29051105
  17. Julian, M. W., Shao, G., Schlesinger, L. S., Huang, Q., Cosmar, D. G., Bhatt, N. Y., Culver, D. A., Baughman, R. P., Wood, K. L. & Crouser, E. D. Nicotine treatment improves toll-like receptor 2 and toll-like receptor 9 responsiveness in active pulmonary sarcoidosis. Chest 143, 461-470 (2013) DOI: 10.1378/chest.12-0383; https://pubmed.ncbi.nlm.nih.gov/22878868
  18. Quik, M., Zhang, D. H., McGregor, M. & Bordia, T. Alpha7 nicotinic receptors as therapeutic targets for Parkinson’s disease. Biochem. Pharmacol. 97, 399-407 (2015) DOI: 10.1016/j.bcp.2015.06.014; https://pubmed.ncbi.nlm.nih.gov/26093062
  19. Ma, C., Liu, Y., Neumann, S. & Gao, X. Nicotine from cigarette smoking and diet and Parkinson disease: A review. Transl. Neurodegener. 6, 18 (2017) DOI: 10.1186/s40035-017-0090-8; https://pubmed.ncbi.nlm.nih.gov/28680589
  20. Newhouse, P. A., Potter, A., Kelton, M. & Corwin, J. Nicotinic treatment of Alzheimer’s disease. Biol. Psychiatry 49, 268-278 (2001) DOI: 10.1016/S0006-3223(00)01069-6; https://www.biologicalpsychiatryjournal.com/article/S0006-3223(00)01069-6/fulltext
  21. Lombardo, S. & Maskos, U. Role of the nicotinic acetylcholine receptor in Alzheimer’s disease pathology and treatment. Neuropharmacology 96, 255-262 (2015) DOI: 10.1016/j.neuropharm.2014.11.018; https://pubmed.ncbi.nlm.nih.gov/25514383
  22. Rusted, J. M., Sawyer, R., Jones, C., Trawley, S. L. & Marchant, N. L. Positive effects of nicotine on cognition: The deployment of attention for prospective memory. Psychopharmacology 202, 93-102 (2009) DOI: 10.1007/s00213-008-1320-7; https://pubmed.ncbi.nlm.nih.gov/18815772
  23. Jasinska, A. J., Zorick, T., Brody, A. L. & Stein, E. A. Dual role of nicotine in addiction and cognition: A review of neuroimaging studies in humans. Neuropharmacology 84, 111-122 (2014) DOI: 10.1016/j.neuropharm.2013.02.015; https://pubmed.ncbi.nlm.nih.gov/23474015
  24. Wesnes, K. A., Edgar, C. J., Kezic, I., Salih, H. M. & De Boer, P. Effects of nicotine withdrawal on cognition in a clinical trial setting. Psychopharmacology 229, 133-140 (2013) DOI: 10.1007/s00213-013-3089-6; https://pubmed.ncbi.nlm.nih.gov/23591603
  25. Newhouse, P. A., Potter, A. & Singh, A. Effects of nicotinic stimulation on cognitive performance. Curr. Opin. Pharmacol. 4, 36-46 (2004) DOI: 10.1016/j.coph.2003.11.001; https://pubmed.ncbi.nlm.nih.gov/15018837
  26. Newhouse, P., Kellar, K., Aisen, P., White, H., Wesnes, K., Coderre, E., Pfaff, A., Wilkins, H., Howard, D. & Levin, E. D. Nicotine treatment of mild cognitive impairment: A 6-month double-blind pilot clinical trial. Neurology 78, 91-101 (2012) DOI: 10.1212/WNL.0b013e31823efcbb; https://pubmed.ncbi.nlm.nih.gov/22665146
  27. Laikowski, M. M., Reisdorfer, F. & Moura, S. NAChR α4β2 subtype and their relation with nicotine addiction, cognition, depression and hyperactivity disorder. Curr. Med. Chem. 26, 3792-3811 (2019) DOI: 10.2174/0929867325666180410105135; https://pubmed.ncbi.nlm.nih.gov/29637850
  28. Vermeulen, J. M., Schirmbeck, F., Blankers, M., et al. Association between smoking behavior and cognitive functioning in patients with psychosis, siblings, and healthy control subjects: Results from a prospective 6-year follow-up study. Am. J. Psychiatry 175, 1121-1128 (2018) DOI: 10.1176/appi.ajp.2018.18010069; https://pubmed.ncbi.nlm.nih.gov/30138044
  29. Gogos, A., Skokou, M., Ferentinou, E. & Gourzis, P. Nicotine consumption during the prodromal phase of schizophrenia – a review of the literature. Neuropsychiatr. Dis. Treat. 15, 2943-2958 (2019) DOI: 10.2147/NDT.S210199; https://pubmed.ncbi.nlm.nih.gov/31802874
  30. Guimarães, K., Madureira, D. Q. M. & Madureira, A. L. The reward-attention circuit model: Nicotine’s influence on attentional focus and consequences on attention deficit hyperactivity disorder. Neurocomputing 242, 140-149 (2017) DOI: 10.1016/j.neucom.2017.02.072; https://www.sciencedirect.com/science/article/pii/S092523121730396X
  31. Boggs, D. L., Surti, T. S., Esterlis, I., Pittman, B., Cosgrove, K., Sewell, R. A., Ranganathan, M. & D’Souza, D. C. Minimal effects of prolonged smoking abstinence or resumption on cognitive performance challenge the „self-medication” hypothesis in schizophrenia. Schizophr. Res. 194, 62-69 (2018) DOI: 10.1016/j.schres.2017.03.047; https://pubmed.ncbi.nlm.nih.gov/28392208
  32. Kollins, S. H., Sweitzer, M. M., McClernon, F. J. & Perkins, K. A. Increased subjective and reinforcing effects of initial nicotine exposure in young adults with attention deficit hyperactivity disorder (ADHD) compared to matched peers: results from an experimental model of first-time tobacco use. Neuropsychopharmacology 45, 851-856 (2020) DOI: 10.1038/s41386-019-0581-7; https://pubmed.ncbi.nlm.nih.gov/31785588
  33. Marquardt, H. & Schäfer, S. Lehrbuch der Toxikologie, Wissenschatliche Verlagsgesellschaft mbH, Stuttgart (2004)
  34. Dawkins, L. E., Kimber, C. F., Doig, M., Feyerabend, C. & Corcoran, O. Self-titration by experienced e-cigarette users: blood nicotine delivery and subjective effects. Psychopharmacology (Berl) 233, 2933-2941 (2016) DOI: 10.1007/s00213-016-4338-2; https://pubmed.ncbi.nlm.nih.gov/27235016
  35. Norbert Zillatron. EU ENVI „expert“ hearing 2013-02-25. (2013) https://www.youtube.com/watch?v=FoTWUwPc70k
  36. Hukkanen, J., Jacob III, P. & Benowitz, N. L. Metabolism and disposition kinetics of nicotine. Pharmacol. Rev. 57, 79-115 (2005) https://pubmed.ncbi.nlm.nih.gov/15734728
  37. Nair, M. K., Chetty, D. J., Ho, H. & Chien, Y. W. Biomembrane permeation of nicotine: Mechanistic studies with porcine mucosae and skin. J. Pharm. Sci. 86, 257-262 (1997) DOI: 10.1021/js960095w; https://pubmed.ncbi.nlm.nih.gov/9040106
  38. Zorin, S., Kuylenstierna, F. & Thulin, H. In vitro test of nicotine’s permeability through human skin. Risk evaluation and safety aspects. Ann. Occup. Hyg. 43, 405-413 (1999) https://pubmed.ncbi.nlm.nih.gov/10518466
  39. Rose, J. E., Mukhin, A. G., Lokitz, S. J., Turkington, T. G., Herskovic, J., Behm, F. M., Garg, S. & Garg, P. K. Kinetics of brain nicotine accumulation in dependent and nondependent smokers assessed with PET and cigarettes containing 11C-nicotine. Proc. Natl. Acad. Sci. U.S.A. 107, 5190-5195 (2010) https://pubmed.ncbi.nlm.nih.gov/20212132
  40. Dawkins, L. & Corcoran, O. Acute electronic cigarette use: Nicotine delivery and subjective effects in regular users. Psychopharmacology 231, 401-407 (2014) DOI: 10.1007/s00213-013-3249-8; https://pubmed.ncbi.nlm.nih.gov/23978909
  41. Yan, X. S. & D’Ruiz, C. Effects of using electronic cigarettes on nicotine delivery and cardiovascular function in comparison with regular cigarettes. Regul. Toxicol. Pharmacol. 71, 24-34 (2015) DOI: 10.1016/j.yrtph.2014.11.004; https://pubmed.ncbi.nlm.nih.gov/25460033
  42. Hiler, M., Karaoghlanian, N., Talih, S., Maloney, S., Breland, A., Shihadeh, A. & Eissenberg, T. Effects of electronic cigarette heating coil resistance and liquid nicotine concentration on user nicotine delivery, heart rate, subjective effects, puff topography, and liquid consumption. Exp. Clin. Psychopharmacol. (2019) DOI: 10.1037/pha0000337; https://pubmed.ncbi.nlm.nih.gov/31855003
  43. St.Helen, G., Dempsey, D. A., Havel, C. M., Jacob, P., III & Benowitz, N. L. Impact of e-liquid flavors on nicotine intake and pharmacology of e-cigarettes. Drug Alcohol Depend. 178, 391-398 (2017) DOI: 10.1016/j.drugalcdep.2017.05.042; https://pubmed.ncbi.nlm.nih.gov/28704768
  44. Kobert, R. Lehrbuch der Intoxikationen. Band II: Spezieller Teil, Verlag von Ferdinand Enke, Stuttgart (1906)
  45. Schroff, C. D. Pharmacologie, Wilhelm Braumüller, Wien (1856)
  46. Mayer, B. How much nicotine kills a human? Tracing back the generally accepted lethal dose to dubious self-experiments in the nineteenth century. Arch. Toxicol. 88, 5-7 (2014) https://pubmed.ncbi.nlm.nih.gov/24091634
  47. Centers for Disease Control and Prevention (CDC). The National Institute for Occupational Safety and Health (NIOSH) – Nicotine. https://www.cdc.gov/niosh/idlh/54115.html
  48. Fagerström, K. O. & Schneider, N. G. Measuring nicotine dependence: A review of the Fagerstrom Tolerance Questionnaire. J. Behav. Med. 12, 159-182 (1989) DOI: 10.1007/BF00846549; https://pubmed.ncbi.nlm.nih.gov/2668531
  49. Etter, J. F., Vu Duc, T. & Perneger, T. V. Validity of the Fagerström test for nicotine dependence and of the heaviness of smoking index among relatively light smokers. Addiction 94, 269-281 (1999) DOI: 10.1046/j.1360-0443.1999.94226910.x; https://pubmed.ncbi.nlm.nih.gov/10396794
  50. Volkow, N. D., Fowler, J. S., Wang, G. J., Swanson, J. M. & Telang, F. Dopamine in drug abuse and addiction: Results of imaging studies and treatment implications. Arch. Neurol. 64, 1575-1579 (2007) DOI: 10.1001/archneur.64.11.1575; https://pubmed.ncbi.nlm.nih.gov/15098002
  51. Moore, D., Aveyard, P., Connock, M., Wang, D., Fry-Smith, A. & Barton, P. Effectiveness and safety of nicotine replacement therapy assisted reduction to stop smoking: Systematic review and meta-analysis. BMJ Open 338, 867-870 (2009) DOI: 10.1136/bmj.b1024; https://pubmed.ncbi.nlm.nih.gov/19342408
  52. Stanley, T. D. & Massey, S. Evidence of nicotine replacement’s effectiveness dissolves when meta-regression accommodates multiple sources of bias. J. Clin. Epidemiol. 79, 41-45 (2016) DOI: 10.1016/j.jclinepi.2016.03.024; https://pubmed.ncbi.nlm.nih.gov/27079846
  53. Solingapuram Sai, K. K., Zuo, Y., Rose, J. E. y. z., Garg, P. K., Garg, S., Nazih, R., Mintz, A. & Mukhin, A. G. Rapid brain nicotine uptake from electronic cigarettes. J. Nucl. Med. (2019) DOI: 10.2967/jnumed.119.230748; https://pubmed.ncbi.nlm.nih.gov/31676729
  54. Fowler, C. D., Gipson, C. D., Kleykamp, B. A., et al. Basic science and public policy: Informed regulation for nicotine and tobacco products. Nicotine Tob. Res. 20. 789-799 (2018) DOI: 10.1093/ntr/ntx175; https://pubmed.ncbi.nlm.nih.gov/29065200
  55. Guillem, K., Vouillac, C., Azar, M. R., Parsons, L. H., Koob, G. F., Cador, M. & Stinus, L. Monoamine oxidase inhibition dramatically increases the motivation to self-administer nicotine in rats. J. Neurosci. 25, 8593-8600 (2005) DOI: 10.1523/JNEUROSCI.2139-05.2005; https://pubmed.ncbi.nlm.nih.gov/16177026
  56. Costello, M. R., Reynaga, D. D., Mojica, C. Y., Zaveri, N. T., Belluzzi, J. D. & Leslie, F. M. Comparison of the reinforcing properties of nicotine and cigarette smoke extract in rats. Neuropsychopharmacology 39, 1843-1851 (2014) DOI: 10.1038/npp.2014.31; https://pubmed.ncbi.nlm.nih.gov/24513971
  57. Smith, T. T., Schaff, M. B., Rupprecht, L. E., Schassburger, R. L., Buffalari, D. M., Murphy, S. E., Sved, A. F. & Donny, E. C. Effects of MAO inhibition and a combination of minor alkaloids, β-carbolines, and acetaldehyde on nicotine self-administration in adult male rats. Drug Alcohol Depend. 155, 243-252 (2015) DOI: 10.1016/j.drugalcdep.2015.07.002; https://pubmed.ncbi.nlm.nih.gov/26257022
  58. Fowler, J. S., Logan, J., Wang, G. J. & Volkow, N. D. Monoamine oxidase and cigarette smoking. Neurotoxicology 24, 75-82 (2003) DOI: 10.1016/S0161-813X(02)00109-2; https://pubmed.ncbi.nlm.nih.gov/12564384
  59. Belluzzi, J. D., Wang, R. & Leslie, F. M. Acetaldehyde enhances acquisition of nicotine self-administration in adolescent rats. Neuropsychopharmacology 30. 705-712 (2005) DOI: 10.1038/sj.npp.1300586; https://pubmed.ncbi.nlm.nih.gov/15496937
  60. Guillem, K., Vouillac, C., Azar, M. R., Parsons, L. H., Koob, G. F., Cador, M. & Stinus, L. Monoamine oxidase A rather than monoamine oxidase B inhibition increases nicotine reinforcement in rats. Eur. J. Neurosci. 24, 3532-3540 (2006) DOI: 10.1111/j.1460-9568.2006.05217.x; https://pubmed.ncbi.nlm.nih.gov/17229101
  61. Clemens, K. J., Caillé, S., Stinus, L. & Cador, M. The addition of five minor tobacco alkaloids increases nicotine-induced hyperactivity, sensitization and intravenous self-administration in rats. Int. J. Neuropsychopharmacol. 12, 1355-1366 (2009) DOI: 10.1017/S1461145709000273; https://pubmed.ncbi.nlm.nih.gov/19366487
  62. Hogg, R. C. Contribution of monoamine oxidase inhibition to tobacco dependence: A review of the evidence. Nicotine Tob. Res. 18, 509-523 (2016) DOI: 10.1093/ntr/ntv245; https://pubmed.ncbi.nlm.nih.gov/26508396
  63. Berlin, I., Said, S., Spreux-Varoquaux, O., Olivares, R., Launay, J. M. & Puech, A. J. Monoamine oxidase A and B activities in heavy smokers. Biol. Psychiatry 38, 756-761 (1995) DOI: 10.1016/0006-3223(95)00084-4; https://pubmed.ncbi.nlm.nih.gov/8580230
  64. Rose, J. E., Behm, F. M., Ramsey, C. & Ritchie, J. C. Platelet monoamine oxidase, smoking cessation, and tobacco withdrawal symptoms. Nicotine Tob. Res. 3, 383-390 (2001) DOI: 10.1080/14622200110087277; https://pubmed.ncbi.nlm.nih.gov/11694206
  65. Fowler, J. S., Logan, J., Wang, G. J., et al. Comparison of monoamine oxidase A in peripheral organs in nonsmokers and smokers. J. Nucl. Med. 46, 1414-1420 (2005) https://pubmed.ncbi.nlm.nih.gov/16157522
  66. Shahab, L., Gilchrist, G., Hagger-Johnson, G., Shankar, A., West, E. & West, R. Reciprocal associations between smoking cessation and depression in older smokers: Findings from the English Longitudinal Study of Ageing. Br. J. Psychiatry 207, 243-249 (2015) DOI: 10.1192/bjp.bp.114.153494; https://pubmed.ncbi.nlm.nih.gov/25999339
  67. Zvolensky, M. J., Bakhshaie, J., Sheffer, C., Perez, A. & Goodwin, R. D. Major depressive disorder and smoking relapse among adults in the United States: A 10-year, prospective investigation. Psychiatry Res. 226, 73-77 (2015) DOI: 10.1016/j.psychres.2014.11.064; https://pubmed.ncbi.nlm.nih.gov/25650047
  68. Patten, S. B., Williams, J. V. A., Lavorato, D. H., Wang, J. L., Sajobi, T. T. & Bulloch, A. G. M. Major depression and non-specific distress following smoking cessation in the Canadian general population. J. Affect. Disord. 218, 182-187 (2017) DOI: 10.1016/j.jad.2017.04.056; https://pubmed.ncbi.nlm.nih.gov/28477495
  69. Stepankova, L., Kralikova, E., Zvolska, K., Pankova, A., Ovesna, P., Blaha, M. & Brose, L. S. Depression and smoking cessation: Evidence from a smoking cessation clinic with 1-Year follow-up. Ann. Behav. Med. 51, 454-463 (2017) DOI: 10.1007/s12160-016-9869-6; https://pubmed.ncbi.nlm.nih.gov/28035641
  70. Shoaib, M. & Buhidma, Y. Why are antidepressant drugs effective smoking cessation aids? Curr. Neuropharmacol. 16, 426-437 (2018) DOI: 10.2174/1570159X15666170915142122; https://pubmed.ncbi.nlm.nih.gov/28925882
  71. Berlin, I., Saïd, S., Spreux-Varoquaux, O., Launay, J. M., Olivares, R., Millet, V., Lecrubier, Y. & Puech, A. J. A reversible monoamine oxidase A inhibitor (moclobemide) facilitates smoking cessation and abstinence in heavy, dependent smokers. Clin. Pharmacol. Ther. 58, 444-452 (1995) DOI: 10.1016/0009-9236(95)90058-6; https://pubmed.ncbi.nlm.nih.gov/7586937
  72. Berlin, I., Hunneyball, I. M., Greiling, D., Jones, S. P., Fuder, H. & Stahl, H. D. A selective reversible monoamine oxidase B inhibitor in smoking cessation: Effects on its own and in association with transdermal nicotine patch. Psychopharmacology 223, 89-98 (2012) DOI: 10.1007/s00213-012-2692-2; https://pubmed.ncbi.nlm.nih.gov/22451094
  73. Siu, E. C. K. & Tyndale, R. F. Non-nicotinic therapies for smoking cessation. Annu. Rev. Pharmacol. Toxicol. 47, 541-564 (2007) DOI: 10.1146/annurev.pharmtox.47.120505.105354; https://pubmed.ncbi.nlm.nih.gov/17209799
  74. Fagerström, K. Determinants of tobacco use and renaming the FTND to the Fagerström test for cigarette dependence. Nicotine Tob. Res. 14, 75-78 (2012) DOI: 10.1093/ntr/ntr137; https://pubmed.ncbi.nlm.nih.gov/22025545
  75. Frenk, H. & Dar, R. If the data contradict the theory, throw out the data: Nicotine addiction in the 2010 report of the Surgeon General. Harm Reduct. J. 8, 1477-7517-1478-1412 (2011) DOI: 10.1186/1477-7517-8-12; https://pubmed.ncbi.nlm.nih.gov/21595895
  76. Etter, J. F. & Eissenberg, T. Dependence levels in users of electronic cigarettes, nicotine gums and tobacco cigarettes. Drug Alcohol Depend. 147, 68-75 (2015) DOI: 10.1016/j.drugalcdep.2014.12.007; https://pubmed.ncbi.nlm.nih.gov/25561385
  77. Liu, G., Wasserman, E., Kong, L. & Foulds, J. A comparison of nicotine dependence among exclusive e-cigarette and cigarette users in the PATH study. Prev. Med. 104, 86-91 (2017) DOI: 10.1016/j.ypmed.2017.04.001; https://pubmed.ncbi.nlm.nih.gov/28389330
  78. Jankowski, M., Krzystanek, M., Zejda, J. E., Majek, P., Lubanski, J., Lawson, J. A. & Brozek, G. E-cigarettes are more addictive than traditional cigarettes—A study in highly educated young people. Int. J. Environ. Res. Public Health 16(2019) DOI: 10.3390/ijerph16132279; https://pubmed.ncbi.nlm.nih.gov/31252671
  79. Du, P., Fan, T., Yingst, J., Veldheer, S., Hrabovsky, S., Chen, C. & Foulds, J. Changes in e-cigarette use behaviors and dependence in long-term e-cigarette users. Am. J. Prev. Med. 57, 374-383 (2019) DOI: 10.1016/j.amepre.2019.04.021; https://pubmed.ncbi.nlm.nih.gov/31375364
  80. Etter, J. F. A longitudinal study of cotinine in long-term daily users of e-cigarettes. Drug Alcohol Depend. 160. 218-221 (2016) DOI: 10.1016/j.drugalcdep.2016.01.003; https://pubmed.ncbi.nlm.nih.gov/26804899
  81. Small, E., Shah, H. P., Davenport, J. J., Geier, J. E., Yavarovich, K. R., Yamada, H., Sabarinath, S. N., Derendorf, H., Pauly, J. R., Gold, M. S. & Bruijnzeel, A. W. Tobacco smoke exposure induces nicotine dependence in rats. Psychopharmacology 208, 143-158 (2010) DOI: 10.1007/s00213-009-1716-z; https://pubmed.ncbi.nlm.nih.gov/19936715
  82. Bruijnzeel, A. W., Rodrick, G., Singh, R. P., Derendorf, H. & Bauzo, R. M. Repeated pre-exposure to tobacco smoke potentiates subsequent locomotor responses to nicotine and tobacco smoke but not amphetamine in adult rats. Pharmacol. Biochem. Behav. 100. 109-118 (2011) DOI: 10.1016/j.pbb.2011.08.005; https://pubmed.ncbi.nlm.nih.gov/21871478
  83. Csabai, D., Cseko, K., Szaiff, L., Varga, Z., Miseta, A., Helyes, Z. & Czéh, B. Low intensity, long term exposure to tobacco smoke inhibits hippocampal neurogenesis in adult mice. Behav. Brain Res. 302, 44-52 (2016) DOI: 10.1016/j.bbr.2016.01.022; https://pubmed.ncbi.nlm.nih.gov/26792108
  84. Sorrells, S. F., Paredes, M. F., Cebrian-Silla, A., et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555, 377-381 (2018) DOI: 10.1038/nature25975; https://pubmed.ncbi.nlm.nih.gov/29513649
  85. Moreno-Jiménez, E. P., Flor-García, M., Terreros-Roncal, J., Rábano, A., Cafini, F., Pallas-Bazarra, N., Ávila, J. & Llorens-Martín, M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med. 25, 554-560 (2019) DOI: 10.1038/s41591-019-0375-9; https://pubmed.ncbi.nlm.nih.gov/30911133
  86. Lee, L. Y., Burki, N. K., Gerhardstein, D. C., Gu, Q., Kou, Y. R. & Xu, J. Airway irritation and cough evoked by inhaled cigarette smoke: Role of neuronal nicotinic acetylcholine receptors. Pulm. Pharmacol. Ther. 20. 355-364 (2007) https://pubmed.ncbi.nlm.nih.gov/17137814
  87. Naqvi, N. H. & Bechara, A. The airway sensory impact of nicotine contributes to the conditioned reinforcing effects of individual puffs from cigarettes. Pharmacol. Biochem. Behav. 81, 821-829 (2005) DOI: 10.1016/j.pbb.2005.06.005; https://pubmed.ncbi.nlm.nih.gov/15996724
  88. Etter, J. F. Throat hit in users of the electronic cigarette: An exploratory study. Psychol. Addict. Behav. 30. 93-100 (2016) DOI: 10.1037/adb0000137; https://pubmed.ncbi.nlm.nih.gov/26653150
  89. WIPO IP Portal. WO2014182736 – NICOTINE SALT FORMULATIONS FOR AEROSOL DEVICES AND METHODS THEREOF. (2014) https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2014182736
  90. Cisternino, S., Chapy, H., André, P., Smirnova, M., Debray, M. & Scherrmann, J. M. Coexistence of passive and proton antiporter-mediated processes in nicotine transport at the mouse blood-brain barrier. AAPS J. 15, 299-307 (2013) DOI: 10.1208/s12248-012-9434-6; https://pubmed.ncbi.nlm.nih.gov/23212563
  91. Tega, Y., Yuzurihara, C., Kubo, Y., Akanuma, S. I., Ehrhardt, C. & Hosoya, K. I. Functional expression of nicotine influx transporter in A549 human alveolar epithelial cells. Drug Metab. Pharmacokinet. 31, 99-101 (2016) DOI: 10.1016/j.dmpk.2015.11.006; https://pubmed.ncbi.nlm.nih.gov/26830082
  92. Seeman, J. I. Possible role of ammonia on the deposition, retention, and absorption of nicotine in humans while smoking. Chem. Res. Toxicol. 20. 326-343 (2007) DOI: 10.1021/tx600290v; https://pubmed.ncbi.nlm.nih.gov/17316028
  93. David, G., Parmentier, E. A., Taurino, I. & Signorell, R. Tracing the composition of single e-cigarette aerosol droplets in situ by laser-trapping and Raman scattering. Sci. Rep. 10. 7929 (2020) DOI: 10.1038/s41598-020-64886-5; https://pubmed.ncbi.nlm.nih.gov/32404884
  94. O’Connell, G., Pritchard, J. D., Prue, C., Thompson, J., Verron, T., Graff, D. & Walele, T. A randomised, open-label, cross-over clinical study to evaluate the pharmacokinetic profiles of cigarettes and e-cigarettes with nicotine salt formulations in US adult smokers. Intern. Emerg. Med. 14, 853-861 (2019) DOI: 10.1007/s11739-019-02025-3; https://pubmed.ncbi.nlm.nih.gov/30712148
  95. Morshed, K. M., Nagpaul, J. P., Majumdar, S. & Amma, M. K. Kinetics of propylene glycol elimination and metabolism in rat. Biochem. Med. Metab. Biol. 39, 90-97 (1988) DOI: 10.1016/0885-4505(88)90062-x; https://pubmed.ncbi.nlm.nih.gov/3355719
  96. Renne, R. A., Wehner, A. P., Greenspan, B. J., Deford, H. S., Ragan, H. A., Westerberg, R. B., Buschbom, R. L., Burger, G. T., Hayes, A. W., Suber, R. L. & Mosberg, A. T. 2-week and 13-week inhalation studies of aerosolized glycerol in rats. Inhal. Toxicol. 4, 95-111 (1992) DOI: 10.3109/08958379209145307; https://www.tandfonline.com/doi/abs/10.3109/08958379209145307
  97. Werley, M. S., Kirkpatrick, D. J., Oldham, M. J., Jerome, A. M., Langston, T. B., Lilly, P. D., Smith, D. C. & McKinney, W. J. Toxicological assessment of a prototype e-cigaret device and three flavor formulations: A 90-day inhalation study in rats. Inhal. Toxicol. 28, 22-38 (2016) DOI: 10.3109/08958378.2015.1130758; https://pubmed.ncbi.nlm.nih.gov/26787428
  98. Phillips, B., Titz, B., Kogel, U., et al. Toxicity of the main electronic cigarette components, propylene glycol, glycerin, and nicotine, in Sprague-Dawley rats in a 90-day OECD inhalation study complemented by molecular endpoints. Food Chem. Toxicol. 109, 315-332 (2017) DOI: 10.1016/j.fct.2017.09.001; https://pubmed.ncbi.nlm.nih.gov/28882640
  99. Vardavas, C. I., Anagnostopoulos, N., Kougias, M., Evangelopoulou, V., Connolly, G. N. & Behrakis, P. K. Short-term pulmonary effects of using an electronic cigarette: Impact on respiratory flow resistance, impedance, and exhaled nitric oxide. Chest 141, 1400-1406 (2012) DOI: 10.1378/chest.11-2443; https://pubmed.ncbi.nlm.nih.gov/22194587
  100. European Chemical Agency (ECHA). Committees for Risk Assessment (RAC) and Socio-economic Analysis (SEAC) adopted 19 final opinions for recommending authorisation. (2016) https://echa.europa.eu/documents/10162/22867731/annex_rac_seac_en.pdf/b18b01c2-7016-f0c8-fdf5-26584ed63f93
  101. Robertson, O. H., Loosli, C. G., Puck, T. T., Bigg, E. & Miller, B. F. The protection of mice against infection with air-borne influenza virus by means of propylene glycol vapor. Science 94, 612-613 (1941) DOI: 10.1126/science.94.2452.612; https://pubmed.ncbi.nlm.nih.gov/17740060
  102. Robertson, O. H., Bigg, E., Puck, T. T. & Miller, B. F. The bacericidal action of propylene glycol vapor on microorganims suspended in air. I. J. Exp. Med. 75, 593-610 (1942) DOI: 10.1084/jem.75.6.593; https://pubmed.ncbi.nlm.nih.gov/19871209
  103. Miler, J. A., Mayer, B. & Hajek, P. Changes in the Frequency of Airway Infections in Smokers Who Switched To Vaping: Results of an Online Survey. J. Addict. Res. Ther. 7(2016) DOI: 10.4172/2155-6105.1000290; https://www.omicsonline.org/open-access/changes-in-the-frequency-of-airway-infections-in-smokers-who-switched-to-vaping-results-of-an-online-survey-2155-6105-1000290.php?aid=77944
  104. Fowles, J. & Dybing, E. Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke. Tob. Control 12, 424-430 (2003) DOI: 10.1136/tc.12.4.424; https://pubmed.ncbi.nlm.nih.gov/14660781
  105. De Flora, S., Izzotti, A., D’Agostini, F., Bennicelli, C., You, M., Lubet, R. A. & Balansky, R. M. Induction and modulation of lung tumors: Genomic and transcriptional alterations in cigarette smoke-exposed mice. Exp. Lung Res. 31, 19-35 (2005) DOI: 10.1080/01902140490494986; https://pubmed.ncbi.nlm.nih.gov/15765917
  106. Beauval, N., Verriele, M., Garat, A., Fronval, I., Dusautoir, R., Antherieu, S., Garcon, G., Lo-Guidice, J. M., Allorge, D. & Locoge, N. Influence of puffing conditions on the carbonyl composition of e-cigarette aerosols. Int. J. Hyg. Environ. Health 222, 136-146 (2019) DOI: 10.1016/j.ijheh.2018.08.015; https://pubmed.ncbi.nlm.nih.gov/30220464
  107. Wang, P., Chen, W., Liao, J., Matsuo, T., Ito, K., Fowles, J., Shusterman, D., Mendell, M. & Kumagai, K. A device-independent evaluation of carbonyl emissions from heated electronic cigarette solvents. PLoS ONE 12, e0169811 (2017) DOI: 10.1371/journal.pone.0169811; https://pubmed.ncbi.nlm.nih.gov/28076380
  108. Farsalinos, K. E., Voudris, V. & Poulas, K. E-cigarettes generate high levels of aldehydes only in ‘dry puff’ conditions. Addiction 110, 1352-1356 (2015) DOI: 10.1111/add.12942; https://pubmed.ncbi.nlm.nih.gov/25996087
  109. Duell, A. K., McWhirter, K. J., Korzun, T., Strongin, R. M. & Peyton, D. H. Sucralose-enhanced degradation of electronic cigarette liquids during vaping. Chem. Res. Toxicol. 32, 1241-1249 (2019) DOI: 10.1021/acs.chemrestox.9b00047; https://pubmed.ncbi.nlm.nih.gov/31079450
  110. Farsalinos, K. E. & Voudris, V. Do flavouring compounds contribute to aldehyde emissions in e-cigarettes? Food Chem. Toxicol. 115, 212-217 (2018) DOI: 10.1016/j.fct.2018.02.059; https://pubmed.ncbi.nlm.nih.gov/29501274
  111. Bundesinstitut für Risikobewertung. Toxikologische Bewertung von Formaldehyd. (2006) https://www.bfr.bund.de/cm/343/toxikologische_bewertung_von_formaldehyd.pdf
  112. Gaur, S. & Agnihotri, R. Health effects of trace metals in electronic cigarette aerosols—a systematic review. Biol. Trace Elem. Res. 188, 295-315 (2019) DOI: 10.1007/s12011-018-1423-x; https://pubmed.ncbi.nlm.nih.gov/29974385
  113. Olmedo, P., Goessler, W., Tanda, S., Grau-Perez, M., Jarmul, S., Aherrera, A., Chen, R., Hilpert, M., Cohen, J. E., Navas-Acien, A. & Rule, A. M. Metal concentrations in e-cigarette liquid and aerosol samples: The contribution of metallic coils. Environ. Health Perspect. 126, Article 027010 (2018) DOI: 10.1289/EHP2175; https://pubmed.ncbi.nlm.nih.gov/29467105
  114. Farsalinos, K. E. & Rodu, B. Metal emissions from e-cigarettes: a risk assessment analysis of a recently-published study. Inhal. Toxicol. 30, 321-326 (2018) DOI: 10.1080/08958378.2018.1523262; https://pubmed.ncbi.nlm.nih.gov/30384783
  115. LeBouf, R. F., Burns, D. A., Ranpara, A., Attfield, K., Zwack, L. & Stefaniak, A. B. Headspace analysis for screening of volatile organic compound profiles of electronic juice bulk material. Anal. Bioanal. Chem. 410, 5951-5960 (2018) DOI: 10.1007/s00216-018-1215-3; https://pubmed.ncbi.nlm.nih.gov/29974153
  116. Elias, J., Dutra, L. M., St Helen, G. & Ling, P. M. Revolution or redux? Assessing IQOS through a precursor product. Tob. Control 27, s102-s110 (2018) DOI: 10.1136/tobaccocontrol-2018-054327; https://pubmed.ncbi.nlm.nih.gov/30305324
  117. Philip Morris International. THE IQOS STORY. The Evolution of Smoke-Free Products. (2019) https://www.pmiscience.com/resources/docs/default-source/Presentations2019/baker_isontech-2019-the-iqos-story.pdf?sfvrsn=9d0fd806_0
  118. Philip Morris International. World Health Organization report on tobacco: Fact versus fiction. (2019) https://www.pmi.com/our-science/facts-versus-fiction—world-health-organization-report-on-tobacco
  119. van der Toorn, M., Frentzel, S., De Leon, H., Goedertier, D., Peitsch, M. C. & Hoeng, J. Aerosol from a candidate modified risk tobacco product has reduced effects on chemotaxis and transendothelial migration compared to combustion of conventional cigarettes. Food Chem. Toxicol. 86, 81-87 (2015) DOI: 10.1016/j.fct.2015.09.016; https://pubmed.ncbi.nlm.nih.gov/26432920
  120. Poussin, C., Laurent, A., Peitsch, M. C., Hoeng, J. & De Leon, H. Systems toxicology-based assessment of the candidate modified risk tobacco product THS2.2 for the adhesion of monocytic cells to human coronary arterial endothelial cells. Toxicology 339, 73-86 (2016) DOI: 10.1016/j.tox.2015.11.007; https://pubmed.ncbi.nlm.nih.gov/26655683
  121. Schaller, J. P., Keller, D., Poget, L., et al. Evaluation of the Tobacco Heating System 2.2. Part 2: Chemical composition, genotoxicity, cytotoxicity, and physical properties of the aerosol. Regul. Toxicol. Pharmacol. 81, S27-S47 (2016) DOI: 10.1016/j.yrtph.2016.10.001; https://pubmed.ncbi.nlm.nih.gov/27720919
  122. Titz, B., Boué, S., Phillips, B., et al. Effects of cigarette smoke, cessation, and switching to two heat-not-burn tobacco products on lung lipid metabolism in C57BL/6 and Apoe-/- mice-an integrative systems toxicology analysis. Toxicol. Sci. 149, 441-457 (2016) DOI: 10.1093/toxsci/kfv244; https://pubmed.ncbi.nlm.nih.gov/26582801
  123. Bekki, K., Inaba, Y., Uchiyama, S. & Kunugita, N. Comparison of chemicals in mainstream smoke in heat-not-burn tobacco and combustion cigarettes. J. UOEH 39, 201-207 (2017) DOI: 10.7888/juoeh.39.201; https://pubmed.ncbi.nlm.nih.gov/28904270
  124. Farsalinos, K. E., Yannovits, N., Sarri, T., Voudris, V. & Poulas, K. Nicotine delivery to the aerosol of a heat-not-burn tobacco product: Comparison with a tobacco cigarette and e-cigarettes. Nicotine Tob. Res. 20, 1004-1009 (2018) DOI: 10.1093/ntr/ntx138; https://pubmed.ncbi.nlm.nih.gov/28637344
  125. Adriaens, K., Van Gucht, D. & Baeyens, F. IQOS™ vs. e-cigarette vs. tobacco cigarette: A direct comparison of short-term effects after overnight-abstinence. Int. J. Environ. Res. Public Health 15, 2902 (2018) DOI: 10.3390/ijerph15122902; https://pubmed.ncbi.nlm.nih.gov/30567400
  126. Leigh, N. J., Palumbo, M. N., Marino, A. M., O’Connor, R. J. & Goniewicz, M. L. Tobacco-specific nitrosamines (TSNA) in heated tobacco product IQOS. Tob. Control 27, S37-S38 (2018) DOI: 10.1136/tobaccocontrol-2018-054318; https://pubmed.ncbi.nlm.nih.gov/30242043
  127. Mallock, N., Boss, L., Burk, R., Danziger, M., Welsch, T., Hahn, H., Trieu, H. L., Hahn, J., Pieper, E., Henkler-Stephani, F., Hutzler, C. & Luch, A. Levels of selected analytes in the emissions of “heat not burn” tobacco products that are relevant to assess human health risks. Arch. Toxicol. 92, 2145-2149 (2018) DOI: 10.1007/s00204-018-2215-y; https://pubmed.ncbi.nlm.nih.gov/29730817
  128. Drovandi, A., Salem, S., Barker, D., Booth, D. & Kairuz, T. Human biomarker exposure from cigarettes versus novel heat-not-burn devices: A systematic review and meta-analysis. Nicotine Tob. Res. (2019) DOI: 10.1093/ntr/ntz200; https://pubmed.ncbi.nlm.nih.gov/31641752
  129. Lüdicke, F., Michael Ansari, S., Lama, N., Blanc, N., Bosilkovska, M., Donelli, A., Picavet, P., Baker, G., Haziza, C., Peitsch, M. & Weitkunat, R. Effects of switching to a heat-not-burn tobacco product on biologically relevant biomarkers to assess a candidate modified risk tobacco product: A randomized trial. Cancer Epidemiol. Biomarkers and Prev. 28, 1934-1943 (2019) DOI: 10.1158/1055-9965.EPI-18-0915; https://pubmed.ncbi.nlm.nih.gov/31270101
  130. Pieper, E., Mallock, N., Henkler-Stephani, F. & Luch, A. Tabakerhitzer als neues Produkt der Tabakindustrie: Gesundheitliche Risiken. Bundesgesundheitsbl. 61, 1422-1428 (2018) DOI: doi.org/10.1007/s00103-018-2823-y; https://pubmed.ncbi.nlm.nih.gov/30284624
  131. Haziza, C., de La Bourdonnaye, G., Donelli, A., Poux, V., Skiada, D., Weitkunat, R., Baker, G., Picavet, P. & Lüdicke, F. Reduction in exposure to selected harmful and potentially harmful constituents approaching those observed upon smoking abstinence in smokers switching to the Menthol Tobacco Heating System 2.2 for 3 months (Part 1). Nicotine Tob. Res. 22, 539-548 (2020) DOI: 10.1093/ntr/ntz013; https://pubmed.ncbi.nlm.nih.gov/30722062
  132. Haziza, C., de La Bourdonnaye, G., Donelli, A., Skiada, D., Poux, V., Weitkunat, R., Baker, G., Picavet, P. & Ludicke, F. Favorable changes in biomarkers of potential harm to reduce the adverse health effects of smoking in smokers switching to the Menthol Tobacco Heating System 2.2 for 3 months (Part 2). Nicotine Tob. Res. 22, 549-559 (2020) DOI: 10.1093/ntr/ntz084; https://pubmed.ncbi.nlm.nih.gov/31125079
  133. Collishaw, N. This should change everything: Using the toxic profile of heat-not-burn products as a performance standard to phase out combustible cigarettes. Tob. Control 28, 245-248 (2019) DOI: 10.1136/tobaccocontrol-2017-054219; https://pubmed.ncbi.nlm.nih.gov/30032098
  134. Pratte, P., Cosandey, S. & Ginglinger, C. G. Investigation of solid particles in the mainstream aerosol of the Tobacco Heating System THS2.2 and mainstream smoke of a 3R4F reference cigarette. Hum. Exp. Toxicol. 36, 1115-1120 (2017) DOI: 10.1177/0960327116681653; https://pubmed.ncbi.nlm.nih.gov/27932538
  135. Oviedo, A., Lebrun, S., Kogel, U., et al. Evaluation of the Tobacco Heating System 2.2. Part 6: 90-day OECD 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects of a mentholated version compared with mentholated and non-mentholated cigarette smoke. Regul. Toxicol. Pharmacol. 81, S93-S122 (2016) DOI: 10.1016/j.yrtph.2016.11.004; https://pubmed.ncbi.nlm.nih.gov/27818348
  136. Tabuchi, T., Gallus, S., Shinozaki, T., Nakaya, T., Kunugita, N. & Colwell, B. Heat-not-burn tobacco product use in Japan: Its prevalence, predictors and perceived symptoms from exposure to secondhand heat-not-burn tobacco aerosol. Tob. Control (2017) DOI: 10.1136/tobaccocontrol-2017-053947; https://pubmed.ncbi.nlm.nih.gov/29248896
  137. Cummings, K. M., Nahhas, G. J. & Sweanor, D. T. What Is accounting for the rapid decline in cigarette sales in Japan? Int. J. Environ. Res. Public Health 17, E3570 (2020) DOI: 10.3390/ijerph17103570; https://pubmed.ncbi.nlm.nih.gov/32443663
  138. CNB Television. Philip Morris CEO on Altria and the future of e-cigarettes. (2019) https://www.youtube.com/watch?v=bTtQQ8tpmGE
  139. Deutsches Krebsforschungszentrum, Heidelberg. Rote Reihe Tabakprävention und Tabakkontrolle: Passivrauchen – ein unterschätztes Gesundheitsrisiko. (2005) https://www.dkfz.de/de/presse/pressemitteilungen/2005/download/Passivrauchen_Band_5.pdf
  140. Novo Argumente für den Fortschritt. Passivrauchen als statistisches Konstrukt. (2008) https://www.novo-argumente.com/artikel/print_novo95_51
  141. Taylor, R., Najafi, F. & Dobson, A. Meta-analysis of studies of passive smoking and lung cancer: Effects of study type and continent. Int. J. Epidemiol. 36, 1048-1059 (2007) DOI: 10.1093/ije/dym158; https://pubmed.ncbi.nlm.nih.gov/17690135
  142. Aune, D., Schlesinger, S., Norat, T. & Riboli, E. Tobacco smoking and the risk of heart failure: A systematic review and meta-analysis of prospective studies. Eur. J. Prev. Cardiol. 26, 279-288 (2019) DOI: 10.1177/2047487318806658; https://pubmed.ncbi.nlm.nih.gov/30335502
  143. Carreras, G., Lugo, A., Gallus, S., et al. Burden of disease attributable to second-hand smoke exposure: A systematic review. Prev. Med. 129, 105833 (2019) DOI: 10.1016/j.ypmed.2019.105833; https://pubmed.ncbi.nlm.nih.gov/31505203
  144. Lipfert, F. W. & Wyzga, R. E. Longitudinal relationships between lung cancer mortality rates, smoking, and ambient air quality: a comprehensive review and analysis. Crit. Rev. Toxicol. 49, 790-818 (2019) DOI: 10.1080/10408444.2019.1700210; https://pubmed.ncbi.nlm.nih.gov/31985340
  145. Wang, A., Kubo, J., Luo, J., et al. Active and passive smoking in relation to lung cancer incidence in the Women’s Health Initiative Observational Study prospective cohort. Ann. Oncol. 26, 221-230 (2015) DOI: 10.1093/annonc/mdu470; https://pubmed.ncbi.nlm.nih.gov/25316260
  146. Peres, J. No clear link between passive smoking and lung cancer. J. Natl. Cancer Inst. 105, 1844-1846 (2013) DOI: 10.1093/jnci/djt365; https://pubmed.ncbi.nlm.nih.gov/24316598
  147. Long, G. A. Comparison of select analytes in exhaled aerosol from e-cigarettes with exhaled smoke from a conventional cigarette and exhaled breaths. Int. J. Environ. Res. Public Health 11, 11177-11191 (2014) DOI: 10.3390/ijerph111111177; https://pubmed.ncbi.nlm.nih.gov/25350011
  148. St.Helen, G., Havel, C., Dempsey, D. A., Jacob, P., III & Benowitz, N. L. Nicotine delivery, retention and pharmacokinetics from various electronic cigarettes. Addiction 111, 535-544 (2016) DOI: 10.1111/add.13183; https://pubmed.ncbi.nlm.nih.gov/26430813
  149. McAuley, T. R., Hopke, P. K., Zhao, J. & Babaian, S. Comparison of the effects of e-cigarette vapor and cigarette smoke on indoor air quality. Inhal. Toxicol. 24, 850-857 (2012) DOI: 10.3109/08958378.2012.724728; https://pubmed.ncbi.nlm.nih.gov/23033998
  150. McNeill, A., Etter, J. F., Farsalinos, K., Hajek, P., le Houezec, J. & McRobbie, H. A critique of a World Health Organization-commissioned report and associated paper on electronic cigarettes. Addiction 109, 2128–2134 (2014) DOI: 10.1111/add.12730; https://pubmed.ncbi.nlm.nih.gov/25196419
  151. Liu, J., Liang, Q., Oldham, M. J., Rostami, A. A., Wagner, K. A., Gillman, I. G., Patel, P., Savioz, R. & Sarkar, M. Determination of selected chemical levels in room air and on surfaces after the use of cartridge-and tank-based e-vapor products or conventional cigarettes. Int. J. Environ. Res. Public Health 14, 969 (2017) DOI: 10.3390/ijerph14090969; https://pubmed.ncbi.nlm.nih.gov/28846634
  152. Logue, J. M., Sleiman, M., Montesinos, V. N., Russell, M. L., Litter, M. I., Benowitz, N. L., Gundel, L. A. & Destaillats, H. Emissions from electronic cigarettes: Assessing vapers’ intake of toxic compounds, secondhand exposures, and the associated health impacts. Environ. Sci. Technol. 51, 9271-9279 (2017) DOI: 10.1021/acs.est.7b00710; https://pubmed.ncbi.nlm.nih.gov/28766331
  153. van Drooge, B. L., Marco, E., Perez, N. & Grimalt, J. O. Influence of electronic cigarette vaping on the composition of indoor organic pollutants, particles, and exhaled breath of bystanders. Environ. Sci. Pollut. Res. 26, 4654‐4666 (2019) DOI: 10.1007/s11356-018-3975-x; https://pubmed.ncbi.nlm.nih.gov/30560536
  154. O’Connell, G., Colard, S., Cahours, X. & Pritchard, J. D. An assessment of indoor air quality before, during and after unrestricted use of E-cigarettes in a small room. Int. J. Environ. Res. Public Health 12, 4889-4907 (2015) DOI: 10.3390/ijerph120504889; https://pubmed.ncbi.nlm.nih.gov/25955526
  155. Schober, W., Fembacher, L., Frenzen, A. & Fromme, H. Passive exposure to pollutants from conventional cigarettes and new electronic smoking devices (IQOS, e-cigarette) in passenger cars. Int. J. Hyg. Environ. Health 222, 486-493 (2019) DOI: 10.1016/j.ijheh.2019.01.003; https://pubmed.ncbi.nlm.nih.gov/30685192
  156. Kulmala, M. How particles nucleate and grow. Science 302, 1000-1001 (2003) DOI: 10.1126/science.1090848; https://pubmed.ncbi.nlm.nih.gov/14605359
  157. Martuzevicius, D., Prasauskas, T., Setyan, A., O’Connell, G., Cahours, X., Julien, R. & Colard, S. Characterisation of the spatial and temporal dispersion differences between exhaled e-cigarette mist and cigarette smoke. Nicotine Tob. Res. 21, 1371-1377 (2019) DOI: 10.1093/ntr/nty121; https://pubmed.ncbi.nlm.nih.gov/29924352
  158. Enomoto, M., Tierney, W. J. & Nozaki, K. Risk of human health by particulate matter as a source of air pollution – Comparison with tobacco smoking. J. Toxicol. Sci. 33, 251-267 (2008) DOI: 10.2131/jts.33.251; https://pubmed.ncbi.nlm.nih.gov/18670156
  159. Bundesintitut für Risikobewertung. Nikotinfreie E-Shishas bergen gesundheitliche Risiken. (2015) https://www.bfr.bund.de/cm/343/nikotinfreie-e-shishas-bergen-gesundheitliche-risiken.pdf
  160. Neuberger, M. The electronic cigarette: A wolf in sheep’s clothing. Wien. Klin. Wochenschr. 127, 385-387 (2015) DOI: 10.1007/s00508-015-0753-3; https://pubmed.ncbi.nlm.nih.gov/26230008
  161. Interessensgemeinschaft E-Dampfen. BfR vs Professor Bernd Mayer. (2015) https://ig-ed.org/2015/05/bfr-vs-professor-bernd-mayer/
  162. Stellungnahme der Innenraumhygienekommission (IRK) zu elektronischen Zigaretten (E-Zigaretten). Bundesgesundheitsbl. 59, 1660-1661 (2016) DOI: 10.1007/s00103-016-2464-y; https://pubmed.ncbi.nlm.nih.gov/27885450
  163. Umweltbundesamt. Stellungnahme der Innenraumhygienekommission (IRK) zu elektronischen Zigaretten (E-Zigaretten). (2016) https://link.springer.com/content/pdf/10.1007/s00103-016-2464-y.pdf
  164. Justiz Online. Oberverwaltungsgericht NRW, 4 A 775/14. (2014) http://www.justiz.nrw.de/nrwe/ovgs/ovg_nrw/j2014/4_A_775_14_Urteil_20141104.html
  165. Krüsemann, E. J. Z., Boesveldt, S., De Graaf, K. & Talhout, R. An e-liquid flavor wheel: A shared vocabulary based on systematically reviewing e-Liquid flavor classifications in literature. Nicotine Tob. Res. 21, 1310-1319 (2019) DOI: 10.1093/ntr/nty101; https://pubmed.ncbi.nlm.nih.gov/29788484
  166. Russell, C., McKeganey, N., Dickson, T. & Nides, M. Changing patterns of first e-cigarette flavor used and current flavors used by 20.836 adult frequent e-cigarette users in the USA. Harm Reduct. J. 15(2018) DOI: 10.1186/s12954-018-0238-6; https://pubmed.ncbi.nlm.nih.gov/29954412
  167. Schneller, L. M., Bansal-Travers, M., Goniewicz, M. L., McIntosh, S., Ossip, D. & O’Connor, R. J. Use of flavored electronic cigarette refill liquids among adults and youth in the US—results from wave 2 of the population assessment of tobacco and health study (2014–2015). PLoS ONE 13, e0202744 (2018) DOI: 10.1371/journal.pone.0202744; https://pubmed.ncbi.nlm.nih.gov/30138412
  168. Bundesinstitut für Risikobewertung. Süßstoff Sucralose: Beim Erhitzen von Lebensmitteln können gesundheitsschädliche Verbindungen entstehen. (2019) https://www.bfr.bund.de/cm/343/suessstoff-sucralose-beim-erhitzen-von-lebensmitteln-koennen-gesundheitsschaedliche-verbindungen-entstehen.pdf
  169. Jensen, R. P., Luo, W., Pankow, J. F., Strongin, R. M. & Peyton, D. H. Hidden formaldehyde in e-cigarette aerosols. N. Engl. J. Med. 372, 392-394 (2015) DOI: 10.1056/NEJMc1413069; https://pubmed.ncbi.nlm.nih.gov/25607446
  170. Ochando, T., Mouret, J. R., Humbert-Goffard, A., Sablayrolles, J. M. & Farines, V. Vicinal diketones and their precursors in wine alcoholic fermentation: Quantification and dynamics of production. Food Res. Int. 103, 192-199 (2018) DOI: 10.1016/j.foodres.2017.10.040; https://pubmed.ncbi.nlm.nih.gov/29389605
  171. Hubbs, A. F., Cummings, K. J., McKernan, L. T., Dankovic, D. A., Park, R. M. & Kreiss, K. Comment on Farsalinos et al., “Evaluation of Electronic Cigarette Liquids and Aerosol for the Presence of Selected Inhalation Toxins”. Nicotine Tob Res 17, 1288-1289 (2015) DOI: 10.1093/ntr/ntu338; https://pubmed.ncbi.nlm.nih.gov/25586777
  172. Farsalinos, K. E., Kistler, K. A., Gillman, G. & Voudris, V. Why we consider the NIOSH-proposed safety limits for diacetyl and acetyl propionyl appropriate in the risk assessment of electronic cigarette liquid use: A response to Hubbs et al. Nicotine Tob. Res. 17, 1290-1291 (2015) DOI: 10.1093/ntr/ntv005; https://pubmed.ncbi.nlm.nih.gov/25586778
  173. Kreiss, K., Gomaa, A., Kullman, G., Fedan, K., Simoes, E. J. & Enright, P. L. Clinical bronchiolitis obliterans in workers at a microwave-popcorn plant. N Engl J Med 347, 330-338 (2002) DOI: 10.1056/NEJMoa020300; https://pubmed.ncbi.nlm.nih.gov/12151470
  174. Rose, C. S. Early detection, clinical diagnosis, and management of lung disease from exposure to diacetyl. Toxicology 388, 9-14 (2017) DOI: 10.1016/j.tox.2017.03.019; https://pubmed.ncbi.nlm.nih.gov/28344095
  175. Hubbs, A. F., Goldsmith, W. T., Kashon, M. L., Frazer, D., Mercer, R. R., Battelli, L. A., Kullman, G. J., Schwegler-Berry, D., Friend, S. & Castranova, V. Respiratory toxicologic pathology of inhaled diacetyl in sprague-dawley rats. Toxicol. Pathol. 36, 330-344 (2008) DOI: 10.1177/0192623307312694; https://pubmed.ncbi.nlm.nih.gov/18474946
  176. Morgan, D. L., Flake, G. P., Kirby, P. J. & Palmer, S. M. Respiratory toxicity of diacetyl in C57BL/6 mice. Toxicol. Sci. 103, 169-180 (2008) DOI: 10.1093/toxsci/kfn016; https://pubmed.ncbi.nlm.nih.gov/18227102
  177. Pierce, J. S., Abelmann, A., Spicer, L. J., Adams, R. E. & Finley, B. L. Diacetyl and 2,3-pentanedione exposures associated with cigarette smoking: implications for risk assessment of food and flavoring workers. Crit. Rev. Toxicol. 44, 420-435 (2014) DOI: 10.3109/10408444.2014.882292; https://pubmed.ncbi.nlm.nih.gov/24635357
  178. Fujioka, K. & Shibamoto, T. Determination of toxic carbonyl compounds in cigarette smoke. Environ Toxicol 21, 47-54 (2006) DOI: 10.1002/tox.20153; https://pubmed.ncbi.nlm.nih.gov/16463255
  179. Farsalinos, K. E., Kistler, K. A., Gillman, G. & Voudris, V. Evaluation of electronic cigarette liquids and aerosol for the presence of selected inhalation toxins. Nicotine Tob. Res. 17, 168-174 (2015) DOI: 10.1093/ntr/ntu176; https://pubmed.ncbi.nlm.nih.gov/25180080
  180. Allen, J. G., Flanigan, S. S., LeBlanc, M., Vallarino, J., MacNaughton, P., Stewart, J. H. & Christiani, D. C. Flavoring chemicals in e-Cigarettes: Diacetyl, 2,3-pentanedione, and acetoin in a sample of 51 products, Including fruit-, candy-, and cocktail-flavored E-cigarettes. Environ. Health Perspect. 124, 733-739 (2016) DOI: 10.1289/ehp.1510185; https://pubmed.ncbi.nlm.nih.gov/26642857
  181. Pierce, J. S., Abelmann, A. & Finley, B. L. Comment on “Flavoring Chemicals in E-Cigarettes: Diacetyl, 2,3-Pentanedione, and Acetoin in a Sample of 51 Products, Including Fruit-, Candy-, and Cocktail-Flavored E-Cigarettes”. Environ. Health Perspect. 124, A100-A101 (2016) DOI: 10.1289/ehp.1611350; https://pubmed.ncbi.nlm.nih.gov/27248354
  182. Allen, J. G., Flanigan, S. S., LeBlanc, M., Vallarino, J., MacNaughton, P., Stewart, J. H. & Christiani, D. C. Response to “Comment on ‘Flavoring Chemicals in E-Cigarettes: Diacetyl, 2,3-Pentanedione, and Acetoin in a Sample of 51 Products, Including Fruit-, Candy-, and Cocktail-Flavored E-Cigarettes'”. Environ. Health Perspect. 124, A102-A103 (2016) DOI: 10.1289/Ehp348; https://pubmed.ncbi.nlm.nih.gov/27248154
  183. Vardavas, C., Girvalaki, C., Vardavas, A., Papadakis, S., Tzatzarakis, M., Behrakis, P. & Tsatsakis, A. Respiratory irritants in e-cigarette refill liquids across nine European countries: a threat to respiratory health? Eur. Resp. J. 50, 1701698 (2017) DOI: 10.1183/13993003.01698-2017; https://pubmed.ncbi.nlm.nih.gov/29269582
  184. Farsalinos, K. & Lagoumintzis, G. Toxicity classification of e-cigarette flavouring compounds based on European Union regulation: analysis of findings from a recent study. Harm Reduct. J. 16, 48 (2019) DOI: 10.1186/s12954-019-0318-2; https://pubmed.ncbi.nlm.nih.gov/31345235
  185. Litt, M. D., Duffy, V. & Oncken, C. Cigarette smoking and electronic cigarette vaping patterns as a function of e-cigarette flavourings. Tob. Control 25 (Suppl. 2), ii67–ii72 (2016) DOI: 10.1136/tobaccocontrol-2016-053223; https://pubmed.ncbi.nlm.nih.gov/27633766
  186. Villanti, A. C., Collins, L. K., Niaura, R. S., Gagosian, S. Y. & Abrams, D. B. Menthol cigarettes and the public health standard: a systematic review. BMC Public Health 17, 983 (2017) DOI: 10.1186/s12889-017-4987-z; https://pubmed.ncbi.nlm.nih.gov/29284458
  187. Benowitz, N. L., Herrera, B. & Jacob, P. Mentholated cigarette smoking inhibits nicotine metabolism. J. Pharmacol. Exp. Ther. 310, 1208-1215 (2004) DOI: 10.1124/jpet.104.066902; https://pubmed.ncbi.nlm.nih.gov/15084646
  188. Sarkar, M., Wang, J. & Liang, Q. Metabolism of nicotine and 4-(methylnitrosamino)-l-(3-pyridyl)-lbutanone (NNK) in menthol and non-menthol cigarette smokers. Drug Metab. Lett. 6, 198-206 (2012) DOI: 10.2174/1872312811206030007; https://pubmed.ncbi.nlm.nih.gov/23140558
  189. Wickham, R. J. How menthol alters tobacco-smoking behavior: A biological perspective. Yale J. Biol. Med. 88, 279-287 (2015) https://pubmed.ncbi.nlm.nih.gov/26339211
  190. Bundesministeriums für Ernährung und Landwirtschaft. Entwurf einer Zweiten Verordnung zur Änderung der Tabakerzeugnis-Verordnung. (2014) https://www.bmel.de/SharedDocs/Downloads/Ernaehrung/Gesundheit/Tabakrichtlinie/RefEntwurf2.AendVOTabakerzVO.pdf?__blob=publicationFile
  191. Bündnis für Tabakfreien Genuss e.V. Bundesrat spricht sich gegen absolutes „Menthol-Verbot“ aus – Votum für Höchstmengenregelung. (2017) https://www.tabakfreiergenuss.org/bundesrat-spricht-sich-gegen-absolutes-menthol-verbot-aus-votum-fuer-hoechstmengenregelung/
  192. Rosbrook, K. & Green, B. G. Sensory Effects of menthol and nicotine in an e-cigarette. Nicotine Tob. Res. 18, 1588-1595 (2016) DOI: 10.1093/ntr/ntw019; https://pubmed.ncbi.nlm.nih.gov/26783293
  193. Fetterman, J. L., Weisbrod, R. M., Feng, B., Bastin, R., Tuttle, S. T., Holbrook, M., Baker, G., Robertson, R. M., Conklin, D. J., Bhatnagar, A. & Hamburg, N. M. Flavorings in tobacco products induce endothelial cell dysfunction. Arterioscler. Thromb. Vasc. Biol. 38, 1607-1615 (2018) DOI: 10.1161/ATVBAHA.118.311156; https://pubmed.ncbi.nlm.nih.gov/29903732
  194. Wölkart, G., Kollau, A., Stessel, H., Russwurm, M., Koesling, D., Schrammel, A., Schmidt, K. & Mayer, B. Effects of flavoring compounds used in electronic cigarette refill liquids on endothelial and vascular function. PLoS One 14, e0222152 (2019) DOI: 10.1371/journal.pone.0222152; https://pubmed.ncbi.nlm.nih.gov/31498828
  195. Mishra, P. K., Adameova, A., Hill, J. A., et al. Guidelines for evaluating myocardial cell death. Am. J. Physiol. 317, H891-H922 (2019) DOI: 10.1152/ajpheart.00259.2019; https://pubmed.ncbi.nlm.nih.gov/31418596
  196. Behar, R. Z., Luo, W., Lin, S. C., Wang, Y., Valle, J., Pankow, J. F. & Talbot, P. Distribution, quantification and toxicity of cinnamaldehyde in electronic cigarette refill fluids and aerosols. Tob. Control 25, ii94-ii102 (2016) DOI: 10.1136/tobaccocontrol-2016-053224; https://pubmed.ncbi.nlm.nih.gov/27633763
  197. Nystoriak, M. A., Kilfoil, P. J., Lorkiewicz, P. K., Ramesh, B., Kuehl, P. J., McDonald, J., Bhatnagar, A. & Conklin, D. J. Comparative effects of parent and heated cinnamaldehyde on the function of human iPSC-derived cardiac myocytes. Toxicol. In Vitro 61, 104648 (2019) DOI: 10.1016/j.tiv.2019.104648; https://pubmed.ncbi.nlm.nih.gov/31518667
  198. Zhu, R., Liu, H., Liu, C., Wang, L., Ma, R., Chen, B., Li, L., Niu, J., Fu, M., Zhang, D. & Gao, S. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol. Res. 122, 78-89 (2017) DOI: 10.1016/j.phrs.2017.05.019; https://pubmed.ncbi.nlm.nih.gov/28559210
  199. Dorri, M., Hashemitabar, S. & Hosseinzadeh, H. Cinnamon (Cinnamomum zeylanicum) as an antidote or a protective agent against natural or chemical toxicities: a review. Drug. Chem. Toxicol. 41, 338-351 (2018) DOI: 10.1080/01480545.2017.1417995; Drug Chem Toxicol
  200. Vasconcelos, N. G., Croda, J. & Simionatto, S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog. 120, 198-203 (2018) DOI: 10.1016/j.micpath.2018.04.036; https://pubmed.ncbi.nlm.nih.gov/29702210
  201. Pisinger, C., Dagli, E., Filippidis, F. T., et al. ERS and tobacco harm reduction. Eur. Resp. J. 54, 1902009 (2019) DOI: 10.1183/13993003.02009-2019; https://pubmed.ncbi.nlm.nih.gov/31801824
  202. Britton, J., George, J., Bauld, L., Agrawal, S., Moxham, J., Arnott, D., McNeill, A. & Hopkinson, N. S. A rational approach to e-cigarettes – challenging ERS policy on tobacco harm reduction. Eur. Resp. J., [published online ahead of print, 2020 Feb 2024] 2000166 (2020) DOI: 10.1183/13993003.00166-2020; https://pubmed.ncbi.nlm.nih.gov/32094209
  203. Polosa, R., Morjaria, J. B., Caponnetto, P., Campagna, D., Russo, C., Alamo, A., Amaradio, M. D. & Fisichella, A. Effectiveness and tolerability of electronic cigarette in real-life: A 24-month prospective observational study. Intern. Emerg. Med. 9, 537-546 (2014) DOI: 10.1007/s11739-013-0977-z; https://pubmed.ncbi.nlm.nih.gov/23873169
  204. Polosa, R., Morjaria, J., Caponnetto, P., Caruso, M., Strano, S., Battaglia, E. & Russo, C. Effect of smoking abstinence and reduction in asthmatic smokers switching to electronic cigarettes: Evidence for harm reversal. Int. J. Environ. Res. Public Health 11, 4965-4977 (2014) DOI: 10.3390/ijerph110504965; https://pubmed.ncbi.nlm.nih.gov/24814944
  205. Polosa, R., Morjaria, J. B., Caponnetto, P., Caruso, M., Campagna, D., Amaradio, M. D., Ciampi, G., Russo, C. & Fisichella, A. Persisting long term benefits of smoking abstinence and reduction in asthmatic smokers who have switched to electronic cigarettes. Discov. Med. 21, 99-108 (2016) https://pubmed.ncbi.nlm.nih.gov/27011045
  206. Polosa, R., Morjaria, J. B., Caponnetto, P., Prosperini, U., Russo, C., Pennisi, A. & Bruno, C. M. Evidence for harm reduction in COPD smokers who switch to electronic cigarettes. Respir. Res. 17, 166 (2016) DOI: 10.1186/s12931-016-0481-x; https://pubmed.ncbi.nlm.nih.gov/27986085
  207. Polosa, R., Morjaria, J. B., Prosperini, U., Russo, C., Pennisi, A., Puleo, R., Caruso, M. & Caponnetto, P. Health effects in COPD smokers who switch to electronic cigarettes: a retrospective-prospective 3-year follow-up. Int J Chron Obstruct Pulmon Dis 13, 2533-2542 (2018) DOI: 10.2147/COPD.S161138; https://pubmed.ncbi.nlm.nih.gov/30197510
  208. Bowler, R. P., Hansel, N. N., Jacobson, S., et al. Electronic cigarette use in US adults at risk for or with COPD: Analysis from two observational cohorts. J. Gen. Intern. Med. 32, 1315-1322 (2017) DOI: 10.1007/s11606-017-4150-7; https://pubmed.ncbi.nlm.nih.gov/28884423
  209. Cummings, K. M. & Polosa, R. E-Cigarette and COPD: Unreliable conclusion about health risks. J. Gen. Intern. Med. 33, 784-785 (2018) DOI: 10.1007/s11606-018-4396-8; https://pubmed.ncbi.nlm.nih.gov/29564607
  210. Sargent, R. P., Shepard, R. M. & Glantz, S. A. Reduced incidence of admissions for myocardial infarction associated with public smoking ban: before and after study. BMJ 328, 977-980 (2004) DOI: 10.1136/bmj.38055.715683.55; https://pubmed.ncbi.nlm.nih.gov/15066887
  211. VapingPost. Stanton Glantz – Expert, or Extremist? (2017) https://www.vapingpost.com/2017/04/28/stanton-glantz-expert-or-extremist/
  212. Bhatta, D. N. & Glantz, S. A. Electronic cigarette use and myocardial infarction among adults in the US Population Assessment of Tobacco and Health. J. Am. Heart Assoc. 8, e012317 (2019) DOI: 10.1161/JAHA.119.012317; https://pubmed.ncbi.nlm.nih.gov/31165662
  213. Brad Rodu – Tobacco Truth. Open Letter to the American Heart Association: #QuitLying. (2019) https://rodutobaccotruth.blogspot.com/2019/11/open-letter-to-american-heart.html
  214. [Anonymous]. Retraction to: Electronic Cigarette Use and Myocardial Infarction Among Adults in the US Population Assessment of Tobacco and Health (Journal of the American Heart Association, (2019), 8, 12, (e012317), 10.1161/JAHA.119.012317). J. Am. Heart Assoc. 9, e014519 (2020) DOI: 10.1161/JAHA.119.014519; https://pubmed.ncbi.nlm.nih.gov/32066313
  215. Bhatta, D. N. & Glantz, S. A. Association of e-cigarette use with respiratory disease among adults: A longitudinal analysis. Am. J. Prev. Med. 58, 182-190 (2020) DOI: 10.1016/j.amepre.2019.07.028; https://pubmed.ncbi.nlm.nih.gov/31859175
  216. Mons, U. E-Zigaretten-Studien: Masse statt Klasse. Dtsch. Arztebl. International 117, A-1118 (2020) https://www.aerzteblatt.de/int/article.asp?id=214130
  217. Bernd Mayer. Erfahrungsberichte von Umsteigern. (2020) https://drive.google.com/file/d/1ICRLnEdlmgUtlN176ku8cWqqZJ-uYd1l/view?usp=sharing
  218. Kuntic, M., Oelze, M., Steven, S., Kroller-Schon, S., Kalinovic, S., Frenis, K., Vujacic-Mirski, K., Huesmann, R., Hoffmann, T., Daiber, A. & Munzel, T. Short-term e-cigarette vapor exposure causes vascular oxidative stress and dysfunction – evidence for a close connection to brain damage and a key role of the phagocytic NADPH oxidase (NOX-2). Eur. Heart J. 9, [published online ahead of print, 2019 Nov 2013] (2019) DOI: 10.1093/eurheartj/ehz772; https://pubmed.ncbi.nlm.nih.gov/31715629
  219. Heitzer, T., Brockhoff, C., Mayer, B., Warnholtz, A., Mollnau, S., Henne, S., Meinertz, T. & Münzel, T. Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers – Evidence for a dysfunctional nitric oxide synthase. Circ. Res. 86, E36-E41 (2000) DOI: 10.1161/01.res.86.2.e36.; https://pubmed.ncbi.nlm.nih.gov/10666424
  220. Mayer, B. Acrolein exposure from electronic cigarettes. Eur. Heart J. 41, 1523 (2020) https://pubmed.ncbi.nlm.nih.gov/32211887
  221. George, J., Hussain, M., Vadiveloo, T., Ireland, S., Hopkinson, P., Struthers, A. D., Donnan, P. T., Khan, F. & Lang, C. C. Cardiovascular effects of switching from tobacco cigarettes to electronic cigarettes. J. Am. Coll. Cardiol. 74, 3112-3120 (2019) DOI: 10.1016/j.jacc.2019.09.067; https://pubmed.ncbi.nlm.nih.gov/31740017
  222. Thomson, R., McDaid, L., Emery, J., Phillips, L., Naughton, F., Cooper, S., Dyas, J. & Coleman, T. Practitioners’ views on nicotine replacement therapy in pregnancy during lapse and for harm reduction: A qualitative study. Int. J. Environ. Res. Public Health 16, 4791 (2019) DOI: 10.3390/ijerph16234791; https://pubmed.ncbi.nlm.nih.gov/31795347
  223. Cooper, S., Taggar, J., Lewis, S., Marlow, N., Dickinson, A., Whitemore, R. & Coleman, T. Effect of nicotine patches in pregnancy on infant and maternal outcomes at 2 years: Follow-up from the randomised, double-blind, placebo-controlled SNAP trial. Lancet Respir. Med. 2, 728-737 (2014) DOI: 10.1016/S2213-2600(14)70157-2; https://pubmed.ncbi.nlm.nih.gov/25127405
  224. Tran, D. T., Preen, D. B., Einarsdottir, K., Kemp-Casey, A., Randall, D., Jorm, L. R., Choi, S. K. Y. & Havard, A. Use of smoking cessation pharmacotherapies during pregnancy is not associated with increased risk of adverse pregnancy outcomes: A population-based cohort study. BMC Med. 18, 15 (2020) DOI: 10.1186/s12916-019-1472-9; https://pubmed.ncbi.nlm.nih.gov/32019533
  225. Claire, R., Chamberlain, C., Davey, M. A., Cooper, S. E., Berlin, I., Leonardi-Bee, J. & Coleman, T. Pharmacological interventions for promoting smoking cessation during pregnancy. Cochrane Database Syst. Rev. 3, CD010078 (2020) DOI: 10.1002/14651858.CD010078.pub3; https://pubmed.ncbi.nlm.nih.gov/32129504
  226. smokefreeaction.org.uk. Use of electronic cigarettes before, during and after pregnancy. A guide for maternity and other healthcare professionals. (2019) https://smokefreeaction.org.uk/wp-content/uploads/2019/08/2019-Challenge-Group-ecigs-briefing-FINAL.pdf
  227. Mehra, V. M., Keethakumar, A., Bohr, Y. M., Abdullah, P. & Tamim, H. The association between alcohol, marijuana, illegal drug use and current use of E-cigarette among youth and young adults in Canada: Results from Canadian Tobacco, Alcohol and Drugs Survey 2017. BMC Public Health 19(2019) DOI: 10.1186/s12889-019-7546-y; https://pubmed.ncbi.nlm.nih.gov/31477067
  228. Meernik, C. & Goldstein, A. O. Should clinicians recommend e-cigarettes to their patients who smoke? No. Ann. Fam. Med. 14, 302-303 (2016) DOI: 10.1370/afm.1961; https://pubmed.ncbi.nlm.nih.gov/27401416
  229. Clive Bates – The counterfactual. Ten perverse intellectual contortions: a guide to the sophistry of anti-vaping activists. (2018) https://www.clivebates.com/ten-perverse-intellectual-contortions-a-guide-to-the-sophistry-of-anti-vaping-activists/#s4.1
  230. Nutt, D. J., King, L. A. & Phillips, L. D. Drug harms in the UK: A multicriteria decision analysis. Lancet 376, 1558-1565 (2010) DOI: 10.1016/S0140-6736(10)61462-6; https://pubmed.ncbi.nlm.nih.gov/21036393
  231. Nutt, D. J., Phillips, L. D., Balfour, D., Curran, H. V., Dockrell, M., Foulds, J., Fagerström, K., Letlape, K., Milton, A., Polosa, R., Ramsey, J. & Sweanor, D. Estimating the harms of nicotine-containing products using the MCDA approach. Eur. Addict. Res. 20, 218-225 (2014) DOI: 10.1159/000360220; https://pubmed.ncbi.nlm.nih.gov/24714502
  232. Public Health England. E-cigarettes: an evidence update. A report commissioned by Public Health England. (2015) https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/733022/Ecigarettes_an_evidence_update_A_report_commissioned_by_Public_Health_England_FINAL.pdf
  233. Public Health England. Vaping in England: an evidence update including mental health and pregnancy, March 2020, (2020) https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/869401/Vaping_in_England_evidence_update_March_2020.pdf
  234. [Anonymous]. E-cigarettes: Public Health England’s evidence-based confusion. Lancet 386, 829 (2015) DOI: 10.1016/S0140-6736(15)00042-2; https://pubmed.ncbi.nlm.nih.gov/26335861
  235. Polosa, R. E-cigarettes: Public Health England’s evidence based confusion? Lancet 386, 1237-1238 (2015) DOI: 10.1016/S0140-6736(15)00133-6; https://pubmed.ncbi.nlm.nih.gov/26346249
  236. C.V. Phillips – Antithrlies.com. Saying e-cigarettes are “95 % less harmful” is a very bad idea (part 143 of 10,000). (2016) https://antithrlies.com/2016/05/25/saying-e-cigarettes-are-95-less-harmful-is-a-very-bad-idea-part-143-of-10000/
  237. Wiebel, J. F., Gohlke, H. & Loddenkemper, R. E-Zigaretten: Eine unterschätzte Gefahr für Lunge und Herz-Kreislauf Vergleich des Schadenspotentials von E-Zigaretten und Tabakzigaretten. Zwischenbilanz zum Weltnichtrauchertag 2019. Ärztlicher Arbeitskreis (2019) http://www.aerztlicher-arbeitskreis.de/files/gesundheitsgefahren_durch_e-zigaretten.pdf
  238. Canistro, D., Vivarelli, F., Cirillo, S., et al. E-cigarettes induce toxicological effects that can raise the cancer risk. Sci. Rep. 7, 2028 (2017) DOI: 10.1038/s41598-017-02317-8; https://pubmed.ncbi.nlm.nih.gov/28515485
  239. Stephens, W. E. Comparing the cancer potencies of emissions from vapourised nicotine products including e-cigarettes with those of tobacco smoke. Tob. Control 27, 10-17 (2018) DOI: 10.1136/tobaccocontrol-2017-053808; https://pubmed.ncbi.nlm.nih.gov/28778971
  240. Slob, W., Soeteman-Hernández, L. G., Bil, W., Staal, Y. C. M., Stephens, W. E. & Talhout, R. A method for comparing the impact on carcinogenicity of tobacco products: A case study on heated tobacco versus cigarettes. Risk Analysis, [published online ahead of print, 2020 May 2021] (2020) DOI: 10.1111/risa.13482; https://pubmed.ncbi.nlm.nih.gov/32356921
  241. Flacco, M. E., Fiore, M., Acuti Martellucci, C., Ferrante, M., Gualano, M. R., Liguori, G., Bravi, F., Pirone, G. M., Marzuillo, C. & Manzoli, L. Tobacco vs. electronic cigarettes: absence of harm reduction after six years of follow-up. Eur. Rev. Med. Pharmacol. Sci. 24, 3923-3934 (2020) DOI: 10.26355/eurrev_202004_20859; https://pubmed.ncbi.nlm.nih.gov/32329868
  242. Dampf im Bild TV. Interview der WELT Redaktion mit Dr. Thomas Hering. (2018) https://www.youtube.com/watch?v=4seRXQhKsyk
  243. Roberts, C. K., Hevener, A. L. & Barnard, R. J. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr. Physiol. 3, 1-58 (2013) DOI: 10.1002/cphy.c110062; https://pubmed.ncbi.nlm.nih.gov/23720280
  244. Piirtola, M., Jelenkovic, A., Latvala, A., et al. Association of current and former smoking with body mass index: A study of smoking discordant twin pairs from 21 twin cohorts. PLoS ONE 13, e0200140 (2018) DOI: 10.1371/journal.pone.0200140; https://pubmed.ncbi.nlm.nih.gov/30001359
  245. Artese, A., Stamford, B. A. & Moffatt, R. J. Cigarette smoking: An accessory to the development of insulin resistance. Am. J. Lifestyle Med. 13, 602-605 (2019) DOI: 10.1177/1559827617726516; https://pubmed.ncbi.nlm.nih.gov/31662726
  246. Eliasson, B., Taskinen, M. R. & Smith, U. Long-term use of nicotine gum is associated with hyperinsulinemia and insulin resistance. Circulation 94, 878-881 (1996) DOI: 10.1161/01.CIR.94.5.878; https://pubmed.ncbi.nlm.nih.gov/8790020
  247. Bernd Mayer – Youtube. Dampfen bei Übergewicht und Diabetes? (2019) https://youtu.be/oRmekMVsx0k
  248. Deutsches Kompetenzzentrum Gesundheitsförderung und Diätetik e.V. (DKGD). Pro und Kontra Süßstoff. (2009) https://www.dkgd.de/dkgd-presse/pro-und-kontra-suessstoff.html
  249. Bonnet, F., Tavenard, A., Esvan, M., Laviolle, B., Viltard, M., Lepicard, E. M. & Lainé, F. Consumption of a carbonated beverage with high-intensity sweeteners has no effect on insulin sensitivity and secretion in nondiabetic adults. J. Nutr. 148, 1293-1299 (2018) DOI: 10.1093/jn/nxy100; https://pubmed.ncbi.nlm.nih.gov/29982723
  250. East, K., Brose, L. S., McNeill, A., Cheeseman, H., Arnott, D. & Hitchman, S. C. Harm perceptions of electronic cigarettes and nicotine: A nationally representative cross-sectional survey of young people in Great Britain. Drug Alcohol Depend. 192, 257-263 (2018) DOI: 10.1016/j.drugalcdep.2018.08.016; https://pubmed.ncbi.nlm.nih.gov/30300799
  251. NORC at the University of Chicago. Public believes nicotine-based smoking and vaping products are more harmful than those Containing THC. (2019) https://www.norc.org/NewsEventsPublications/PressReleases/Pages/public-believes-nicotine-based-smoking-and-vaping-products-are-more-harmful-than-those-containing-thc.aspx
  252. Huang, J., Feng, B., Weaver, S. R., Pechacek, T. F., Slovic, P. & Eriksen, M. P. Changing perceptions of harm of e-cigarette vs cigarette use among adults in 2 US national surveys from 2012 to 2017. JAMA Netw. Open 2, e191047 (2019) DOI: 10.1001/jamanetworkopen.2019.1047; https://pubmed.ncbi.nlm.nih.gov/30924893
  253. Lund, K. E. & Vedoy, T. F. Relative risk perceptions between snus and cigarettes in a snus-prevalent society – an observational study over a 16 year period. Int. J. Environ. Res. Public Health 16, 879 (2019) DOI: 10.3390/ijerph16050879; https://pubmed.ncbi.nlm.nih.gov/30862006
  254. Bundesinstitut für Risikobewertung. BfR-Verbrauchermonitor 2019 | Spezial E-Zigaretten. (2019) https://www.bfr.bund.de/cm/350/bfr-verbrauchermonitor-2019-spezial-e-zigaretten.pdf
  255. PRESSEPORTAL – Philip Morris GmbH. Risikoreduzierung für Raucher: Kartografie zeigt großen Informationswunsch bei deutschen Gesundheitsexperten. (2020) https://www.presseportal.de/pm/37922/4608172
  256. Bell, K., Salmon, A., Bowers, M., Bell, J. & McCullough, L. Smoking, stigma and tobacco ‘denormalization’: Further reflections on the use of stigma as a public health tool. A commentary on Social Science & Medicine’s Stigma, Prejudice, Discrimination and Health Special Issue (67: 3). Soc. Sci. Med. 70, 795-799 (2010) DOI: 10.1016/j.socscimed.2009.09.060; https://pubmed.ncbi.nlm.nih.gov/20044187
  257. Sæbø, G. & Scheffels, J. Assessing notions of denormalization and renormalization of smoking in light of e-cigarette regulation. Int. J. Drug Policy 49, 58-64 (2017) DOI: 10.1016/j.drugpo.2017.07.026; https://pubmed.ncbi.nlm.nih.gov/28987929
  258. Patel, R. R. & Schmidt, H. Should employers be permitted not to hire smokers? A review of US legal provisions. Int. J. Health Policy Manag. 6, 701-706 (2017) DOI: 10.15171/ijhpm.2017.33; https://pubmed.ncbi.nlm.nih.gov/29172377
  259. Díez-Izquierdo, A., Cassanello-Peñarroya, P., Lidón-Moyano, C., Matilla-Santander, N., Balaguer, A. & Martínez-Sánchez, J. M. Update on thirdhand smoke: A comprehensive systematic review. Environmental Research 167, 341-371 (2018) DOI: 10.1016/j.envres.2018.07.020; https://pubmed.ncbi.nlm.nih.gov/30096604
  260. Bush, D. & Goniewicz, M. L. A pilot study on nicotine residues in houses of electronic cigarette users, tobacco smokers, and non-users of nicotine-containing products. Int. J. Drug Policy 26, 609-611 (2015) DOI: 10.1016/j.drugpo.2015.03.003; https://pubmed.ncbi.nlm.nih.gov/25869751
  261. Khachatoorian, C., Jacob, P., Benowitz, N. L. & Talbot, P. Electronic cigarette chemicals transfer from a vape shop to a nearby business in a multiple-tenant retail building. Tob. Control 28, 519-525 (2019) DOI: 10.1136/tobaccocontrol-2018-054316; https://pubmed.ncbi.nlm.nih.gov/30158206
  262. Khachatoorian, C., Jacob, P., Sen, A., Zhu, Y., Benowitz, N. L. & Talbot, P. Identification and quantification of electronic cigarette exhaled aerosol residue chemicals in field sites. Environmental Research 170, 351-358 (2019) DOI: 10.1016/j.envres.2018.12.027; https://pubmed.ncbi.nlm.nih.gov/30623881
  263. Chen, J., Ho, S. Y., Leung, L. T., Wang, M. P. & Lam, T. H. Adolescent support for tobacco control policies and associations with tobacco denormalization beliefs and harm perceptions. Int. J. Environ. Res. Public Health 16, 147 (2019) DOI: 10.3390/ijerph16010147; https://pubmed.ncbi.nlm.nih.gov/30621115
  264. Kang, H. & Cho, S. I. Cohort effects of tobacco control policy: Evidence to support a tobacco-free norm through smoke-free policy. Tob. Control 29, 96-102 (2020) DOI: 10.1136/tobaccocontrol-2018-054536; https://pubmed.ncbi.nlm.nih.gov/30554163
  265. O’Connor, R. J., Rees, V. W., Rivard, C., Hatsukami, D. K. & Cummings, K. M. Internalized smoking stigma in relation to quit intentions, quit attempts, and current e-cigarette use. Subst. Abus. 38, 330-336 (2017) DOI: 10.1080/08897077.2017.1326999; https://pubmed.ncbi.nlm.nih.gov/28481713
  266. Lozano, P., Thrasher, J. F., Forthofer, M., Hardin, J., Shigematsu, L. M. R., Arillo Santillan, E. & Fleischer, N. L. Smoking-related stigma: A public health tool or a damaging force? Nicotine Tob. Res. 22, 96-103 (2020) DOI: 10.1093/ntr/nty151; https://pubmed.ncbi.nlm.nih.gov/30053141
  267. Bayer, R. & Bachynski, K. E. Banning smoking in parks and on beaches: Science, policy, and the politics of denormalization. Health Aff. 32, 1291-1298 (2013) DOI: 10.1377/hlthaff.2012.1022; https://pubmed.ncbi.nlm.nih.gov/23836746
  268. Scott, N., Crane, M., Lafontaine, M., Seale, H. & Currow, D. Stigma as a barrier to diagnosis of lung cancer: patient and general practitioner perspectives. Prim. Health Care Res. Dev. 16, 618-622 (2015) DOI: 10.1017/S1463423615000043; https://pubmed.ncbi.nlm.nih.gov/25660904
  269. King, A. C., Smith, L. J., McNamara, P. J., Matthews, A. K. & Fridberg, D. J. Passive exposure to electronic cigarette (E-cigarette) use increases desire for combustible and e-cigarettes in young adult smokers. Tob. Control 24, 501-504 (2015) DOI: 10.1136/tobaccocontrol-2014-051563; https://pubmed.ncbi.nlm.nih.gov/24848637
  270. Hallingberg, B., Maynard, O. M., Bauld, L., Brown, R., Gray, L., Lowthian, E., MacKintosh, A. M., Moore, L., Munafo, M. R. & Moore, G. Have e-cigarettes renormalised or displaced youth smoking? Results of a segmented regression analysis of repeated cross sectional survey data in England, Scotland and Wales. Tob. Control 29, 207-216 (2020) DOI: 10.1136/tobaccocontrol-2018-054584; https://pubmed.ncbi.nlm.nih.gov/30936390
  271. Bauld, L., Mackintosh, A. M., Eastwood, B., Ford, A., Moore, G., Dockrell, M., Arnott, D., Cheeseman, H. & McNeill, A. Young people’s use of e-cigarettes across the united kingdom: Findings from five surveys 2015–2017. Int. J. Environ. Res. Public Health 14, 973 (2017) DOI: 10.3390/ijerph14090973; https://pubmed.ncbi.nlm.nih.gov/28850065
  272. Foxon, F. & Selya, A. S. Electronic cigarettes, nicotine use trends, and use initiation ages among US adolescents from 1999–2018. Addiction, [published online ahead of print, 2020 Apr 2025] (2020) DOI: doi: 10.1111/add.15099; https://pubmed.ncbi.nlm.nih.gov/32335976
  273. ash – action on smoking and health. Use of e-cigarettes (vaporisers) among adults in Great Britain. (2019) https://ash.org.uk/wp-content/uploads/2019/09/Use-of-e-cigarettes-among-adults-2019.pdf
  274. Marty’s Megastore 1210 Wien. TPD 2016 Deutscher Bundestag Landwirtschaftsausschuss E-Zigarette Dr. Bernd Mayer. (2016) https://www.youtube.com/watch?v=JJtYTeCjNIw
  275. NEO MAGAZIN ROYALE. Homöopathie wirkt* | NEO MAGAZIN ROYALE mit Jan Böhmermann – ZDFneo. (2019) https://www.youtube.com/watch?v=pU3sAYRl4-k
  276. EUR-Lex. The precautionary principle. (2000) https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM%3Al32042
  277. ARD – Tagesschau. Robert Loddenkemper, Pneumologe, zur Schädlichkeit von E-Zigaretten. (2019) https://www.tagesschau.de/multimedia/video/video-620573.html
  278. Centers for Disease Control and Prevention. Outbreak of Lung Injury Associated with the Use of E-Cigarette, or Vaping, Products. (2020) https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease.html
  279. Marlière, C., De Greef, J., Gohy, S., Hoton, D., Wallemacq, P., Jacquet, L. M. & Belkhir, L. Fatal E-cigarette or vaping associated lung injury (EVALI): A first case report in Europe. Eur. Resp. J., [published online ahead of print, 2020 Mar 2026] (2020) DOI: 10.1183/13993003.00077-2020; https://pubmed.ncbi.nlm.nih.gov/32217651
  280. Nau media AG. Werden Menschen durch E-Zigaretten lungenkrank? (2019) https://www.nau.ch/news/amerika/werden-menschen-durch-e-zigaretten-lungenkrank-65571835
  281. Morning Consult. As vaping-related lung illnesses worsen, public holds e-cigarettes like Juul culpable. (2019) https://morningconsult.com/2019/09/19/as-vaping-related-lung-illnesses-worsen-public-holds-e-cigarettes-like-juul-culpable/
  282. Leafly. Vape pen lung disease has insiders eyeing misuse of new additives. (2019) https://www.leafly.com/news/health/vape-pen-lung-disease-thc-oil-additive-investigation
  283. Butt, Y. M., Smith, M. L., Tazelaar, H. D., Vaszar, L. T., Swanson, K. L., Cecchini, M. J., Boland, J. M., Bois, M. C., Boyum, J. H., Froemming, A. T., Khoor, A., Mira-Avendano, I., Patel, A. & Larsen, B. T. Pathology of vaping-associated lung injury. N. Engl. J. Med. 381, 1780-1781 (2019) DOI: 10.1056/NEJMc1913069; https://pubmed.ncbi.nlm.nih.gov/31577870
  284. Layden, J. E., Ghinai, I., Pray, I., et al. Pulmonary illness related to e-cigarette use in Illinois and Wisconsin – Final report. N. Engl. J. Med. 382, 903-916 (2020) DOI: 10.1056/NEJMoa1911614; https://pubmed.ncbi.nlm.nih.gov/31491072
  285. Thakrar, P. D., Boyd, K. P., Swanson, C. P., Wideburg, E. & Kumbhar, S. S. E-cigarette, or vaping, product use-associated lung injury in adolescents: a review of imaging features. Pediatr. Radiol. 50, 338-344 (2020) DOI: 10.1007/s00247-019-04572-5; https://pubmed.ncbi.nlm.nih.gov/31897566
  286. Bhat, T. A., Kalathil, S. G., Bogner, P. N., Blount, B. C., Goniewicz, M. L. & Thanavala, Y. M. An animal model of inhaled Vitamin E acetate and Evali-like lung injury. N. Engl. J. Med. 382, 1175-1177 (2020) DOI: 10.1056/NEJMc2000231; https://pubmed.ncbi.nlm.nih.gov/32101656
  287. Wu, D. & O’Shea, D. F. Potential for release of pulmonary toxic ketene from vaping pyrolysis of Vitamin E acetate. Proc. Natl. Acad. Sci. U.S.A. 117, 6349-6355 (2020) DOI: 10.1073/pnas.1920925117; https://pubmed.ncbi.nlm.nih.gov/32156732
  288. Narimani, M. & da Silva, G. Does “Dry Hit” vaping of Vitamin E acetate contribute to EVALI? Simulating toxic ketene formation during E-cigarette use. ChemRxiv, Posted date: 02/03/2020 (2020) DOI: doi.org/10.26434/chemrxiv.11889828.v1; https://doi.org/10.26434/chemrxiv.11889828.v1
  289. Prof. Michael Siegel. The Rest of the Story: Tobacco and Alcohol News Analysis and Commentary… .Providing the whole story behind tobacco and alcohol news. (2020) http://tobaccoanalysis.blogspot.com
  290. Vaping360, A Look Back at CDC’s Award-Nominated “EVALI” Response. (2020) https://vaping360.com/vape-news/90032/a-look-back-at-cdcs-award-nominated-evali-response/
  291. Arcavi, L. & Benowitz, N. L. Cigarette smoking and infection. Arch. Int. Med. 164, 2206-2216 (2004) DOI: 10.1001/archinte.164.20.2206; https://pubmed.ncbi.nlm.nih.gov/15534156
  292. Feldman, C. & Anderson, R. Cigarette smoking and mechanisms of susceptibility to infections of the respiratory tract and other organ systems. J. Infect. 67, 169-184 (2013) https://pubmed.ncbi.nlm.nih.gov/23707875
  293. Kalil, A. C. & Thomas, P. G. Influenza virus-related critical illness: Pathophysiology and epidemiology. Crit. Care 23, 258 (2019) DOI: 10.1186/s13054-019-2539-x; https://pubmed.ncbi.nlm.nih.gov/31324202
  294. Baskaran, V., Murray, R. L., Hunter, A., Lim, W. S. & McKeever, T. M. Effect of tobacco smoking on the risk of developing community acquired pneumonia: A systematic review and meta-analysis. PLoS ONE 14, e0220204 (2019) DOI: 10.1371/journal.pone.0220204; https://pubmed.ncbi.nlm.nih.gov/31318967
  295. Hespanhol, V. P. & Barbara, C. Pneumonia mortality, comorbidities matter? Pulmonology, S2531-0437(2519)30205-30203 Online ahead of print (2019) DOI: 10.1016/j.pulmoe.2019.10.003; https://pubmed.ncbi.nlm.nih.gov/31787563
  296. The Influence Foundation – Filter. Anti-Vaping Zealots Find Opportunity in the Pandemic. (2020) https://filtermag.org/anti-vaping-zealots-find-opportunity-in-the-pandemic/amp/
  297. reason Foundation. While a Real Epidemic Raged, the Surgeon General Was Spreading Misinformation About Masks and Vaping. (2020) https://reason.com/2020/04/02/while-a-real-epidemic-raged-the-surgeon-general-was-spreading-misinformation-about-masks-and-vaping/
  298. Volkow, N. D. Collision of the COVID-19 and addiction epidemics. Ann. Intern. Med., [published online ahead of print, 2020 Apr 2022] (2020) DOI: 10.7326/M20-1212; https://pubmed.ncbi.nlm.nih.gov/32240293
  299. Madison, M. C., Landers, C. T., Gu, B. H., et al. Electronic cigarettes disrupt lung lipid homeostasis and innate immunity independent of nicotine. J. Clin. Invest. 129, 4290-4304 (2019) DOI: 10.1172/JCI128531; https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072791194&doi=10.1172%2fJCI128531&partnerID=40&md5=55f16b26c6082a44d873591cae1f1684
  300. UCSF Center for Tobacco Control Research and Education. UCSF adds smoking and vaping nicotine and cannabis to COVID-19 triage protocol. (2020) https://tobacco.ucsf.edu/ucsf-adds-smoking-and-vaping-nicotine-and-cannabis-covid-19-triage-protocol
  301. Farsalinos, K., Barbouni, A. & Niaura, R. Smoking, vaping and hospitalization for COVID-19. Qeios (2020) DOI: 10.32388/Z69O8A.13; https://www.qeios.com/read/article/561
  302. CDC COVID-19 Response Team. Preliminary Estimates of the Prevalence of Selected Underlying Health Conditions Among Patients with Coronavirus Disease 2019 – United States, February 12-March 28, 2020. MMWR Morb. Mortal. Wkly. Rep. 69, 382-386 (2020) 10.15585/mmwr.mm6913e2; https://pubmed.ncbi.nlm.nih.gov/32240123
  303. Dreher, M., Kersten, A., Bickenbach, J., et al. Charakteristik von 50 hospitalisierten COVID-19-Patienten mit und ohne ARDS. Dtsch. Arztebl. Int. 117, 271-278 (2020) DOI: 10.3238/arztebl.2020.0271; https://www.aerzteblatt.de/archiv/213454/Charakteristik-von-50-hospitalisierten-COVID-19-Patienten-mit-und-ohne-ARDS
  304. Miyara, M., Tubach, F., Pourcher, V., Morelot-Panzini, C., Pernet, J., Haroche, J., Lebbah, S., Morawiec, E., Gorochov, G., Caumes, E., Hausfater, P., Combes, A., Similowski, T. & Amoura, Z. Low incidence of daily active tobacco smoking in patients with symptomatic COVID-19. Qeios (2020) DOI: 10.32388/WPP19W.2; https://www.qeios.com/read/article/569
  305. Simons, D., Shahab, L., Brown, J. & Perski, O. The association of smoking status with SARS-CoV-2 infection, hospitalisation and mortality from COVID-19: A living rapid evidence review. Qeios (2020) DOI: doi:10.32388/UJR2AW.2.; https://www.qeios.com/read/article/584
  306. Richardson, S., Hirsch, J. S., Narasimha, M., et al. Comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA, [published online ahead of print, 2020 Apr 2022] (2020) DOI: 10.1001/jama.2020.6775;
  307. Gerlach, H., Pappert, D., Lewandowski, K., Rossaint, R. & Falke, K. J. Long-term inhalation with evaluated low doses of nitric oxide for selective improvement of oxygenation in patients with adult respiratory distress syndrome. Intensive Care Med. 19, 443-449 (1993) DOI: 10.1007/BF01711084; https://pubmed.ncbi.nlm.nih.gov/8294626
  308. Monteil, V., Kwon, H., Prado, P., et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell, Journal pre-proof (2020) DOI: 10.1016/j.cell.2020.04.004; https://www.cell.com/pb-assets/products/coronavirus/CELL_CELL-D-20-00739.pdf
  309. Wang, H., Yu, M., Ochani, M., Amelia, C. A., Tanovic, M., Susarla, S., Li, J. H., Wang, H., Yang, N., Ulloa, L., Al-Abed, Y., Czura, C. J. & Tracey, K. J. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421, 384-388 (2003) DOI: 10.1038/nature01339; https://pubmed.ncbi.nlm.nih.gov/12508119
  310. Yue, X., Basting, T. M., Flanagan, T. W., Xu, J., Lobell, T. D., Gilpin, N. W., Gardner, J. D. & Lazartigues, E. Nicotine downregulates the compensatory angiotensin-converting enzyme 2/angiotensin type 2 receptor of the renin-angiotensin system. Ann. Am. Thorac. Soc. 15, S126-S127 (2018) DOI: 10.1513/AnnalsATS.201706-464MG; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955030/
  311. Changeux, J. P., Amoura, Z., Rey, F. & Miyara, M. A nicotinic hypothesis for Covid-19 with preventive and therapeutic implications. Qeios (2020) DOI: 10.32388/FXGQSB; https://www.qeios.com/read/article/581
  312. Farsalinos, K., Niaura, R. & Poulas, K. COVID-19, a disease of the nicotinic cholinergic system? Nicotine may be protective. Qeios (2020) DOI: 10.32388/JFLAE3.2.; https://www.qeios.com/read/JFLAE3.2
  313. Farsalinos, K., Niaura, R., Le Houezec, J., Barbouni, A., Tsatsakis, A., Kouretas, D., Vantarakis, A. & Poulas, K. Editorial: Nicotine and SARS-CoV-2: COVID-19 may be a disease of the nicotinic cholinergic system. Toxicol. Rep., [published online ahead of print April 30 2020] (2020) DOI: 10.1016/j.toxrep.2020.04.012; https://www.sciencedirect.com/science/article/pii/S2214750020302924
  314. France Inter. Une étude clinique bientôt lancée pour déterminer les effets de la nicotine sur le Covid-19. (2020) https://www.franceinter.fr/la-nicotine-une-arme-contre-le-covid
  315. Bloomberg. Philip Morris money is funding pro-vaping virus spin. (2020) https://www.bloomberg.com/news/articles/2020-04-17/philip-morris-money-is-funding-pro-vaping-coronavirus-spin
  316. STOP. Stopping Tobacco Organizations & Products. Review of controversial french studies on link between smoking and COVID-19. (2020) https://exposetobacco.org/wp-content/uploads/STP043_Covid19_FrenchStudies_02.pdf
  317. Altria. Altria’s Third-Quarter 2019 Earnings Conference Call. (2019) http://www.snl.com/interactive/newlookandfeel/4087349/Altria_Q3_2019_Presentation.pdf
  318. GALLUP. Americans say Marijuana vaping less harmful than tobacco. (2018) https://news.gallup.com/poll/237839/americans-say-marijuana-vaping-less-harmful-tobacco.aspx
  319. ash – action on smoking and health. In 2019 around half as many Britons now vape as smoke, and the majority are ex-smokers. (2019) https://ash.org.uk/media-and-news/press-releases-media-and-news/in-2019-around-half-as-many-britons-now-vape-as-smoke-and-the-majority-are-ex-smokers/
  320. Farsalinos, K., Siakas, G., Poulas, K., Voudris, V., Merakou, K. & Barbouni, A. E-cigarette use is strongly associated with recent smoking cessation: an analysis of a representative population sample in Greece. Intern. Emerg. Med. 14, 835-842 (2019) DOI: 10.1007/s11739-018-02023-x; https://pubmed.ncbi.nlm.nih.gov/30637600
  321. Hajek, P., Phillips-Waller, A., Przulj, D., Pesola, F., Myers Smith, K., Bisal, N., Li, J., Parrott, S., Sasieni, P., Dawkins, L., Ross, L., Goniewicz, M., Wu, Q. & McRobbie, H. J. A randomized trial of e-cigarettes versus nicotine-replacement therapy. N. Engl. J. Med. 380, 629-637 (2019) DOI: 10.1056/NEJMoa1808779; https://pubmed.ncbi.nlm.nih.gov/30699054
  322. Cox, S., Dawkins, L., Doshi, J. & Cameron, J. Effects of e-cigarettes versus nicotine replacement therapy on short-term smoking abstinence when delivered at a community pharmacy. Addict. Behav. Rep. 10, 100202 (2019) DOI: 10.1016/j.abrep.2019.100202; https://pubmed.ncbi.nlm.nih.gov/31338412
  323. Borrelli, B. & O’Connor, G. T. E-cigarettes to assist with smoking cessation. N. Engl. J. Med. 380, 678-679 (2019) DOI: 10.1056/NEJMe1816406; https://pubmed.ncbi.nlm.nih.gov/30699299
  324. Jackson, S. E., Farrow, E., Brown, J. & Shahab, L. Is dual use of nicotine products and cigarettes associated with smoking reduction and cessation behaviours? A prospective study in England. BMJ Open 10, e036055 (2020) DOI: 10.1136/bmjopen-2019-036055; https://pubmed.ncbi.nlm.nih.gov/32179563
  325. Kalkhoran, S. & Glantz, S. A. E-cigarettes and smoking cessation in real-world and clinical settings: A systematic review and meta-analysis. Lancet Respir. Med. 4, 116-128 (2016) DOI: 10.1016/S2213-2600(15)00521-4; https://pubmed.ncbi.nlm.nih.gov/26776875
  326. Hajek, P., McRobbie, H. & Bullen, C. E-cigarettes and smoking cessation. Lancet Respir. Med. 4, e23 (2016) DOI: 10.1016/S2213-2600(16)30024-8; https://pubmed.ncbi.nlm.nih.gov/27133216
  327. Gomajee, R., El-Khoury, F., Goldberg, M., Zins, M., Lemogne, C., Wiernik, E., Lequy-Flahault, E., Romanello, L., Kousignian, I. & Melchior, M. Association between electronic cigarette use and smoking reduction in France. JAMA Intern. Med. 179, 1193-1200 (2019) DOI: 10.1001/jamainternmed.2019.1483; https://pubmed.ncbi.nlm.nih.gov/31305860
  328. The Real Cost. Vaping Is An Epidemic | The Real Cost. (2018) https://youtu.be/zYuyS1Oq8gY
  329. DEBRA. Deutsche Befragung zum Rauchverhalten. (2020) http://debra-study.info/wordpress/
  330. ash – action on smoking and health. Use of e-cigarettes among young people in Great Britain. (2019) http://ash.org.uk/wp-content/uploads/2019/06/ASH-Factsheet-Youth-E-cigarette-Use-2019.pdf
  331. Centers for Disease Control and Prevention (CDC). Youth and Tobacco Use. (2019) https://www.cdc.gov/tobacco/data_statistics/fact_sheets/youth_data/tobacco_use/index.htm#current-estimates
  332. Brad Rodu – Tobacco Truth. The 2018 American Teen Vaping Epidemic, Recalculated. (2019) https://rodutobaccotruth.blogspot.com/2019/05/the-2018-american-teen-vaping-epidemic.html?fbclid=IwAR3DvrekFZokPZ665O0fwVvbrHrahdbrH5u4UQ4nXLw3ytQJ10rBRdiCu_Q
  333. Morgenstern, M., Nies, A., Goecke, M. & Hanewinkel, R. E-Cigarettes and the use of conventional cigarettes. A cohort study in 10th grade students in Germany. Dtsch. Arztebl. Int. 115, 243-248 (2018) DOI: 10.3238/arztebl.2018.0243; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938547/
  334. Phillips, C. V. Gateway effects: Why the cited evidence does not upport their existence for low-risk tobacco products (and what evidence would). Int. J. Environ. Res. Public Health 12, 5439-5464 (2015) DOI: 10.3390/ijerph120505439; https://pubmed.ncbi.nlm.nih.gov/26006122
  335. Kandel, E. R. & Kandel, D. B. A molecular basis for nicotine as a gateway drug. N. Engl. J. Med. 371, 932-943 (2014) DOI: 10.1056/NEJMsa1405092; https://pubmed.ncbi.nlm.nih.gov/25409384
  336. Consumer Advocates for Smoke-Free Alternatives Assoc. (CASAA). New claims that e-cigarettes are a gateway to cocaine use are junk science. (2014) http://www.casaa.org/news/new-claims-that-e-cigarettes-are-a-gateway-to-cocaine-use-are-junk-science/
  337. CBS Baltimore. Vaping Prompts Maryland School To Remove Bathroom Doors. (2018) https://baltimore.cbslocal.com/2018/04/23/school-removes-bathroom-doors-vaping/
  338. New York Post. Alabama school removes bathroom stall doors to stop students from vaping. (2019) https://nypost.com/2019/09/08/alabama-school-removes-bathroom-stall-doors-to-stop-students-from-vaping/
  339. Du, P., Bascom, R., Fan, T., Sinharoy, A., Yingst, J., Mondal, P. & Foulds, J. Changes in flavor preference in a cohort of long-term electronic cigarette users. Ann. Am. Thorac. Soc. (2020) DOI: 10.1513/AnnalsATS.201906-472OC; https://pubmed.ncbi.nlm.nih.gov/31978316
  340. Clive Bates – The counterfactual. The US vaping flavour ban: twenty things you should know. (2019) https://www.clivebates.com/the-us-vaping-flavour-ban-twenty-things-you-should-know/
  341. Talih, S., Salman, R., El-Hage, R., Karam, E., Karaoghlanian, N., El-Hellani, A., Saliba, N. & Shihadeh, A. Characteristics and toxicant emissions of JUUL electronic cigarettes. Tob. Control 28, 678-680 (2019) DOI: 10.1136/tobaccocontrol-2018-054616; https://pubmed.ncbi.nlm.nih.gov/30745326
  342. Pankow, J. F., Kim, K., McWhirter, K. J., Luo, W., Escobedo, J. O., Strongin, R. M., Duell, A. K. & Peyton, D. H. Benzene formation in electronic cigarettes. PloS One 12, e0173055 (2017) DOI: 10.1371/journal.pone.0173055; https://pubmed.ncbi.nlm.nih.gov/28273096
  343. Dr. Farsalinos – E-Cigarette Research. Study titled „Benzene formation in e-cigarettes” found that air has more benzene than e-cigs. (2017) http://ecigarette-research.org/research/index.php/whats-new/2017/252-benz
  344. Morean, M. E., Krishnan-Sarin, S. & S. O’Malley, S. Assessing nicotine dependence in adolescent e-cigarette users: The 4-item Patient-Reported Outcomes Measurement Information System (PROMIS) Nicotine Dependence Item Bank for electronic cigarettes. Drug Alcohol Depend. 188, 60-63 (2018) DOI: 10.1016/j.drugalcdep.2018.03.029; https://pubmed.ncbi.nlm.nih.gov/29753155
  345. Vogel, E. A., Ramo, D. E. & Rubinstein, M. L. Prevalence and correlates of adolescents’ e-cigarette use frequency and dependence. Drug Alcohol Depend. 188, 109-112 (2018) DOI: 10.1016/j.drugalcdep.2018.03.051; https://pubmed.ncbi.nlm.nih.gov/29763848
  346. Centers for Disease Control and Prevention. Youth Risk Behavior Surveillance — United States, 2017. Supplementary Tables 7-15: Behaviors that Contribute to Unintentional Injuries. (2018) https://www.cdc.gov/healthyyouth/data/yrbs/2017_tables/contribute_to_injury.htm#t7_down
  347. World Health Organization. E-cigarettes are harmful to health. (2020) https://www.who.int/news-room/detail/05-02-2020-e-cigarettes-are-harmful-to-health
  348. Süddeutsche Zeitung. Cyberkriminelle entdecken E-Zigaretten für sich. (2016) https://www.sueddeutsche.de/digital/schadsoftware-cyberkriminelle-entdecken-e-zigaretten-fuer-sich-1.3013082
  349. National Affairs. Sally Satel: The E-Cigarette Revolution That Wasn’t. (2020) https://www.nationalaffairs.com/publications/detail/the-e-cigarette-revolution-that-wasn’t
  350. Tiihonen, J., Ronkainen, K., Kangasharju, A. & Kauhanen, J. The net effect of smoking on healthcare and welfare costs. A cohort study. BMJ Open 2, e001678 (2012) DOI: 10.1136/bmjopen-2012-001678; https://pubmed.ncbi.nlm.nih.gov/23233699
  351. Lungenfachklinik Immenhausen. Kurs zur Tabakentwöhnung. (2020) http://www.lungenfachklinik-immenhausen.de/index.php?seitenid=218&parent=210&brosis=91&nmon=114&lang=
  352. Lungenärzte im Netz. Das Dampfen nikotinhaltiger E-Zigaretten beeinträchtigt die Selbstreinigung der Atemwege. (2019) https://www.lungenaerzte-im-netz.de/news-archiv/meldung/article/das-dampfen-nikotinhaltiger-e-zigaretten-beeintraechtigt-die-selbstreinigung-der-atemwege/
  353. Foundation for a Smoke-Free World. Global Trends in Nicotine – 2019 Update. (2019) https://www.smokefreeworld.org/wp-content/uploads/2019/08/fsfw_global_trends_in_nicotine_designupdate.pdf
  354. Centers for Disease Control and Prevention. Cancers linked to tobacco use make up 40 % of all cancers diagnosed in the United States. (2016) https://www.cdc.gov/media/releases/2016/p1110-vital-signs-cancer-tobacco.html
  355. DKFZ – Deutsches Krebsforschungszentrum. Aus der Wissenschaft – für die Politik. Regulierungsempfehlungen für elektronische Inhalationsprodukte. (2014) https://www.dkfz.de/de/tabakkontrolle/download/Publikationen/AdWfP/AdWfdP_Regulierungsempfehlungen_fuer_elektronische_Inhalationsprodukte.pdf
  356. SPIEGEL Wissenschaft – Manfred Dworschak. Wie Pharmakonzerne gegen die E-Zigarette vorgehen. (2019) https://www.spiegel.de/wissenschaft/warum-die-pharmalobby-die-e-zigarette-bekaempft-a-00000000-0002-0001-0000-000165579742
  357. World Health Organization. WHO FRAMEWORK CONVENTION ON TOBACCO CONTROL. (2003) https://www.who.int/tobacco/framework/WHO_FCTC_english.pdf
  358. Conference of the Parties to the WHO Framework Convention on Tobacco Control. Electronic Nicotine Delivery Systems and Electronic Non-Nicotine Delivery Systems (ENDS/ENNDS). (2016) https://www.who.int/fctc/cop/cop7/FCTC_COP_7_11_EN.pdf
  359. World Health Organization. WHO statement on ban of e-cigarettes by Government of India. (2019) https://www.who.int/india/news/detail/19-09-2019-who-statement-on-ban-of-e-cigarettes-by-government-of-india
  360. Iowa Department of Justice – Office of the Attorney General. International experts in tobacco policy say WHO is blocking innovation and wasting opportunities to save millions of lives. (2020) https://www.iowaattorneygeneral.gov/newsroom/world-tobacco-day-who-vaping-experts
  361. Prof. Heino Stöver – Youtube. Online-Symposium „Zwischenbilanz E-Zigarette: Was wir wissen, müssen” am 27.05.2020. Teil 4. (2020) https://www.youtube.com/watch?v=A9m8nKtL7HE
  362. VAPERS.GURU – Joey Hoffmann. Vernetzung der Gegner der E-Zigarette in Deutschland. (2019) https://www.vapers.guru/wp-content/uploads/2019/05/Konspiration.pdf
  363. VSI -Vape Scene Investigation (Youtube). Update zur USA Verbotswelle – Nur Geld der Grund? (2019) https://youtu.be/3v4N7-ZAXxA
  364. World Health Organization. Guidelines for implementation of Article 5.3 of the WHO Framework Convention on Tobacco Control. (2008) https://www.who.int/fctc/guidelines/article_5_3.pdf?ua=1
  365. 8th ECToH – European Conference on Tobacco or Health. Registration. (2020) https://www.ectoh.org/conference-ticket.html
  366. Foundation for a Smoke-Free World. Funding. (2018) https://www.smokefreeworld.org/our-vision/funding/
  367. World Health Organization. WHO Statement on Philip Morris funded Foundation for a Smoke-Free World. (2017) https://www.who.int/news-room/detail/28-09-2017-who-statement-on-philip-morris-funded-foundation-for-a-smoke-free-world
  368. Yach, D. Accelerating an end to smoking: a call to action on the eve of the FCTC’s COP9. Drugs and Alcohol Today (2020) DOI: 10.1108/DAT-02-2020-0012; https://www.emerald.com/insight/content/doi/10.1108/DAT-02-2020-0012/full/pdf
  369. Polosa, R. & Crawley, F. P. Scientific and ethical obligations to publish tobacco industry-funded research on nicotine delivery systems of reduced risk. Toxicology 390, 61-62 (2017) DOI: 10.1016/j.tox.2017.09.003; https://pubmed.ncbi.nlm.nih.gov/28882573
  370. Herman, E. S. & Chomski, N. Manufacturing Consent: The Political Economy of the Mass Media, Pantheon Books, USA (1988)
  371. KONTRAST.at. Printmedien in Österreich. (2018) https://kontrast.at/medien-oesterreich/
  372. Buchegger, R. Irren mit Hausverstand: Warum scheinbar einfache Lösungen und Alltagsregeln falsche Ratgeber sind, Goldegg Verlag, Berlin (2013)

 

(Zum Autor)

(Zum Online-Shop)